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Abstract

The foundations of mechanics deal with the identification of the fundamental objects and
the postulation of its principles. The mechanical principles together with constitutive laws
enable the description and prediction of the motion of mechanical systems and processes.
This work is concerned with fundamental questions on the foundations of continuum
mechanics and with the application of these concepts to beam theories.

Due to the high level of abstraction, the mathematical discipline of intrinsic differential
geometry seems to be best suited for the description of continuum mechanics. Step by step,
additional mathematical structure can be introduced and motivated by the underlying
physics. A geometric description of continuum mechanics is on the one hand coordinate
independent and on the other hand a priori metric independent. In this thesis, body and
space as the central objects of continuum mechanics are introduced as smooth manifolds.
Whereas balance of linear and angular momentum in integral form are not applicable on
manifolds, it is possible to formulate the principle of virtual work within this generalized
setting. The virtual displacement field is defined as an element of the tangent space of
the infinite dimensional configuration manifold constituted by the set of all embeddings
of the body into the space. Moreover, the set of forces of a continuous body in the sense
of duality and its representation are discussed. With further assumptions on internal and
external force contributions, the principle of virtual work of classical continuum mechanics
can be postulated from an intrinsic differential geometric point of view. Especially the
concept of stress is set in a new light. Insofar, the variational stress is considered as the
linear map of the covariant derivative of the virtual displacement field to a volume form
of the body manifold.

The theory of beams is another branch of mechanics which shows the strength of
a variational formulation of a continuous body given by its virtual work principle. It
is possible to consider a beam as a continuous body with a constrained position field
guaranteed by a perfect constraint stress field. Defining a constrained position field and
applying the restricted kinematics to the principle of virtual work of a continuous body,
the constraint stresses are eliminated due to the principle of d’Alembert–Lagrange and
the weak variational form of an appropriate beam theory is induced. Such an approach to
beam theory relates the point of view of beams as generalized one-dimensional continua to
the theory of continuous bodies. In this work all classical beam theories, where the cross
sections remain rigid and plain, are presented. Additionally, augmented beam theories,
where cross section deformation is allowed, are derived using the very same procedure.
All theories are suitable for large displacements and large rotations.
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Zusammenfassung

Die Axiomatisierung der Mechanik handelt von der Identifikation der fundamentalen Ob-
jekte und der Formulierung der Grundprinzipien. Zusammen mit konstitutiven Gesetzen
ermöglichen mechanische Prinzipien die Beschreibung und die Voraussage der Bewegungen
von mechanischen Systemen und Prozessen. Diese Arbeit beschäftigt sich mit grundlegen-
den Fragen zur Axiomatisierung der Kontinuumsmechanik und mit der Anwendung der
Grundprinzipien auf die Balkentheorie.

Aufgrund der hohen Abstraktionsstufe erscheint die intrinsische Differentialgeometrie
die geeignete mathematische Disziplin für die Beschreibung der Kontinuumsmechanik zu
sein. Zusätzliche mathematische Strukturen können Schritt für Schritt physikalisch mo-
tiviert eingeführt werden. Eine geometrische Beschreibung der Kontinuumsmechanik ist
einerseits koordinatenunabhängig und andererseits a priori metrikunabhängig. Als zen-
trale Objekte werden Körper und Raum in dieser Arbeit als glatte Mannigfaltigkeiten
eingeführt. Während die Impuls- und Drehimpulsbilanzgleichungen auf Mannigfaltigkei-
ten nicht angewendet werden können, ist es unter diesen verallgemeinerten Annahmen
möglich das Prinzip der virtuellen Arbeit zu formulieren. Die Menge aller Einbettungen
vom Körper in den Raum bildet die unendlich-dimensionale Konfigurationsmannigfaltig-
keit. Ein Element des Tangentialraumes an diese entspricht einem gesamten virtuellen Ver-
schiebungsfeld des Körpers. Im Sinne der Dualität werden Kontinuumskräfte eingeführt
und deren Representationsmöglichkeit besprochen. Mit zusätzlichen Annahmen an innere
und äussere Kräfte wird des Weiteren das Prinzip der virtuellen Arbeit für das klassische
Kontinuum in einer intrinsisch differentialgeometrischen Form postuliert. Insbesondere
das Konzept der Spannung wird in ein neues Licht gerückt. So wird die variationelle
Spannung als lineare Abbildung von der kovarianten Ableitung des virtuellen Verschie-
bungsfeldes auf eine Volumenform des Körpers aufgefasst.

Die Balkentheorie entspricht einem weiteren Teil der Mechanik, welcher die Stärke ei-
ner variationellen Formulierung der Kontinuumsmechanik durch das Prinzip der virtuellen
Arbeit aufzeigt. Es ist möglich einen Balken als gebundenes Kontinuum zu betrachten,
dessen eingeschränkte Kinematik durch ein Zwangsspannungsfeld garantiert wird. Durch
die Definition eines gebundenen Verschiebungsfeldes und durch das Anwenden der einge-
schränkten Kinematik auf das Prinzip der virtuellen Arbeit des Kontinuums, wird unter
Verwendung des Prinzips von d’Alembert–Lagrange die schwache variationelle Form ei-
ner zugehörigen Balkentheorie induziert. Ein solcher Zugang zur Balkentheorie verbindet
die Ansicht von Balken als eindimensionale generalisierte Kontinua mit der Kontinu-
umstheorie. In dieser Arbeit werden alle klassischen Theorien mit starren und ebenen
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Schnittebenen vorgestellt. Zusätzlich werden erweiterte Balkentheorien, welche Schnit-
tebenendeformationen zulassen, mit derselben Methodik hergeleitet. Alle Theorien lassen
grosse Verschiebungen und grosse Rotationen zu.
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Chapter1
Introduction

This monograph is concerned with fundamental questions on the foundations of continuum
mechanics and its application to beam theories. It does not pretend to be in any way
‘complete’, but merely serves as a discussion about novel approaches applied to these very
classical fields of mechanics.

This first chapter starts with a short introduction and motivation for the thesis. Subse-
quently, Section 1.2 sheds some light on the virtual work in mechanics. After a literature
survey in Section 1.3, the aim and scope of the thesis is presented in Section 1.4. An
outline of this thesis is given in Section 1.5.

1.1 Motivation

One of the main goals of mechanics is the description and the prediction of the motion of
mechanical devices, machines and mechanical processes. To meet this aim, abstract me-
chanical theories are formulated, thereby applying concepts from mathematical science.
In such a determinism, a strict separation between reality and mathematical abstrac-
tion, called the model, has to be considered. The modeling process, being the procedure
of the mathematical abstraction, is an interaction between the choice of the assumed
mathematical structure and the description of observations in the real world within this
mathematical framework. Hence, a mechanical theory can be developed on different lev-
els of mathematical abstraction. The higher the level of mathematical abstraction, the
less mathematical objects are involved and the more general a mechanical theory is. By
increasing the level of abstraction in a mechanical theory, we try to extract the essential
mechanical objects. An important step on that route of abstraction is the description
of mechanics with as little mathematical structure as necessary, to recognize the funda-
mental laws of mechanics. There exists a vast amount of specific mechanical theories in
which many assumptions on the kinematics of the system and on constitutive level are
taken. For instance, we may distinguish between rigid body mechanics, beam theories,
shell theories, theory of elasticity, theory of fluids, finite degree of freedom mechanics to
name a few. A fundamental question emerges: does a mechanical theory on a high level
of abstraction exist which is able to induce these specific theories? The question immedi-
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2 Chapter 1. Introduction

ately asks for the assumptions and concepts to arrive in a rigorous way at all these specific
theories. The question of the embedding of well-known specific theories in a more general
mechanical theory is one of the major challenges of modern classical mechanics. Such an
embedding of theories leads to a more compact formulation of the vast field of classical
mechanics. It leads to a deeper understanding of mechanics and will eventually allow
treating more complex mechanical systems. This is what can be understood as scientific
progress.

1.2 The Virtual Work

A rather novel insight in analytical mechanics is that the virtual work of a mechanical sys-
tem is invariant with respect to the change of coordinates. This is directly related to the
fact that there is a (coordinate free) differential geometric definition of the virtual work.
To explain the basic idea, consider the case of finite degree of freedom mechanics, where
the configuration manifold fully describes the kinematic state of the mechanical system.
A generalized virtual displacement is a tangent vector of the configuration manifold. A
covector of the configuration manifold as an element of the cotangent space constitutes a
generalized force. The virtual work is defined as the real number obtained by the evalu-
ation of a generalized force acting on a generalized virtual displacement. This geometric
definition of the virtual work is completely free of any choice of coordinates and does
not require any further geometric structure such as a metric. With the geometrical point
of view in mind, the determination of the configuration manifold, being the kinematic
description of the mechanical system, induces the space of generalized forces of the me-
chanical system. In a nutshell, the choice of kinematics defines, in the sense of duality,
what kind of forces we may expect.

An illustrating example is a moving particle in the Euclidean three-space, where the
very same space corresponds to the configuration manifold of the particle. Consequently,
the generalized forces are elements of the cotangent space of the Euclidean three-space. In
the Euclidean three-space there exist two important isomorphisms. One isomorphism is
a canonical isomorphism between the tangent space and the Euclidean three-space. The
second isomorphism is the isomorphism between tangent and cotangent space induced by
the Euclidean metric. Using both isomorphisms, a generalized force on the particle can be
identified with an element from the Euclidean three-space. This corresponds to the very
classical understanding of a force as a geometric object from the Euclidean three-space
satisfying the parallelogram law. As a side note, it is meaningless to speak of such thing
as a couple of the particle, since there is no kinematic counterpart in the description of a
particle.

Being the invariant object in mechanics, the virtual work almost naturally emerges as
a central element in the postulation of the fundamental laws of mechanics. The virtual
work of a mechanical system is the sum of the virtual work contributions of all forces of
the mechanical system. The principle of virtual work, stated as an axiom, claims that the
virtual work of a mechanical system has to vanish for all virtual displacements. Hence,
the principle of virtual work as a fundamental mechanical law is a coordinate free and
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metric independent formulation. Introducing more geometric structure as e.g. a metric,
it is possible to formulate constitutive laws which relate force quantities with kinematic
quantities and to arrive at more specific mechanical theories. For instance, a metric is
required to define the strain of a continuous body which is necessary for the formulation of
a material law. Another example is the formulation of the dynamics of a particle moving
in the Euclidean three-space. The linear relation between the velocity of the particle
and the linear momentum needs a metric of the space and the mass of the particle as a
proportionality factor. Thus, from a differential geometric point of view, the definition of
the linear momentum can be considered as an assumption on constitutive level.

In computational mechanics for infinite dimensional systems, the principle of virtual
work in the form of weak variational formulations is a fully accepted concept. It is used
to perform existence and uniqueness proofs on the one hand, and to develop numerical
schemes on the other hand. As a variational formulation, the principle of virtual work
provides the only possibility within classical mechanics to mathematically define perfect
bilateral constraints. The latter is done in form of a variational equality, known as the
principle of d’Alembert–Lagrange, which puts the constraint forces into the annihilator
space of the admissible virtual displacements. The concept of perfect constraints is om-
nipresent in each branch of mechanics and is quintessential to induce more specific theories
from a general mechanical theory.

Many specific mechanical theories can be considered as special cases of the theory of
continuous bodies. Rigid body mechanics, for instance, is the dynamics of a continuous
body whose deformation is constrained such that the position field of the body can be
described by a displacement of one material point of the body and a rotation of the body
only. Hence, the rigid body can be considered as a constrained continuous body. As
discussed above, the principle of virtual work as a variational formulation is the only way
to treat perfect bilateral constraints. Consequently, to induce a specific mechanical theory
from the theory of a continuous body by imposing further constraints on the mechanical
system, a variational formulation of the dynamics of a continuous body is inevitable.

In order to obtain an intrinsic theory of a continuous body in variational form, we have
to use the concepts of analytical mechanics, where the forces are induced by the choice
of the kinematics of the mechanical system. Before starting with a play, the actors and
the scene have to be determined. Here, the body plays the role of a single actor and the
scene is given by the model of the physical space. The play, i.e. how the body performs on
the scene, corresponds to the admissible configurations of the body in the physical space.
Using appropriate definitions of the body and the physical space, the set of all maps of the
body into the physical space build an infinite dimensional manifold, called configuration
manifold. This configuration manifold induces as in the finite dimensional setting the
space of forces in the sense of duality. Applying the principle of virtual work together
with further assumptions, which forces are involved, how these forces are represented and
what their virtual work contribution is, this leads us directly to the fundamental law of a
continuous body in a variational setting.

The section is closed with a list of several reasons why a general mechanical theory
should be formulated variationally by the principle of virtual work.

− The space of forces of a mechanical system is induced by its kinematics. Hence, the
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forces cannot be defined regardless of the underlying kinematics.

− Set-valued force laws, including perfect bilateral constraints, can only be formulated
variationally. This argument follows directly the slogan of P. D. Panagiotopoulos
“In mechanics, there are forces and force laws”.

− Many specific mechanical theories can be obtained by constraining the position field
of a more general theory. To treat the perfect bilateral constraints, a variational
formulation is inevitable.

− The most successful numerical methods, as e.g. finite element methods, rely on
variational formulations.

− Under special assumptions on the mechanical system, variational problems and en-
ergy methods are directly obtained from the principle of virtual work.

− An intrinsic differential geometric formulation of mechanics requires the virtual
work. Insofar, a more general definition of a body and the physical space is possi-
ble. Thus, the physical space is not restricted to be a Euclidean space and can be
modeled, for instance, as a space-time vector bundle.

1.3 Literature Survey

In this section, a short literature survey on the foundations of continuum mechanics
and on beam theories is given. To understand some developments in the foundations of
continuum mechanics, it is tried to bring the literature on this field into a rough historical
context. The survey on beam theories is merely intended to give some references which
might be helpful in getting more detailed information.

Foundations of Continuum Mechanics

Over the past two centuries continuum mechanics has become one of the cornerstones
of classical mechanics. Evidently, there exist an immense and unmanageable number of
publications on the foundations of continuum mechanics. After the celebrated theorem
about the existence of a stress tensor of Cauchy (1827) and the derivation of Cauchy’s
first law of motion in Cauchy (1828), the 19th century was to a large extent occupied
with continuum mechanics for very specific material laws. The theory of elasticity, i.e.
continuum mechanics for solids with infinitesimal deformations and linear elastic material
laws, was the predominated paradigm for solids. This very specific theory allows to find
analytic solutions for many problems. Hence, the theory of linear elasticity has been the
basis to further develop the theory of strength of materials.

For a detailed historical overview of continuum mechanics in the 20th century, we refer
to Maugin (2013). In the first part of this century, there has been an increase in popularity
in the description of the behavior of solids undergoing finite deformations as variational
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problems. This trend is manifested in a series of publications such as Murnaghan (1937),
Reissner (1953) or Doyle and Ericksen (1956). The drawback of a formulation of con-
tinuum mechanics as a variational problem is, that the possible material laws of the
continuum are restricted to the very specific subset of hyperelastic material laws. This
drawback has been eliminated in the seminal treatise of Truesdell and Toupin (1960) in
which the theory of classical field theories is based on the balance of linear and angular
momentum. The treatment therein has been mainly influenced by the system of axioms
formulated in Noll (1958) and Noll (1959), a former student of Truesdell. The balance of
linear and angular momentum, completed by the balance of energy and the conservation
of mass, are generally referred to as the balance laws. Soon after the publication of the
classical field theories, the theory of continuum mechanics has been enriched in Trues-
dell and Noll (1965), completing the former work by an extensive treatise on material
laws. The influence of Truesdell and Noll on continuum mechanics has led to a wealth of
textbooks on continuum mechanics which follow the very same philosophy, e.g. Malvern
(1965), Gurtin (1981), Chadwick (1999), Holzapfel (2001), Liu (2002), Spencer (2004),
Dvorkin and Goldschmit (2006). For a treatment in curvilinear coordinates, we refer to
Ogden (1997), Ciarlet (1988) and Başar and Weichert (2000). The approach of Truesdell
and Noll to continuum mechanics is revealed in the list of contents of the very techni-
cal treatise on rational continuum mechanics, Truesdell (1977): “I. Bodies, Forces, and
Motions”, “II. Kinematics”, “III. The Stress Tensor” and “IV. Constitutive Relations”.
Very outstanding in this approach to continuum mechanics is the strong division between
balance laws and constitutive laws. The attitude of Truesdell concerning variational prin-
ciples is clarified in Truesdell and Toupin (1960), Par. 231, where he distances himself from
variational principles as fundamental equations of mechanics and regard them merely as
derivative and subservient to the balance laws. Even stronger words can be found in
Truesdell (1964) where he claims, that Lagrange has misunderstood or neglected general
principles and concepts of mechanics.

According to Truesdell and Toupin (1960), the first application of the virtual work
to a continuum can be found in Piola (1833). Eighty years later, Hellinger (1914) based
continuum mechanics on the principle of virtual work and emphasized the benefits of the
invariance of the virtual work. Therein, the virtual work of the continuum is formulated
as the duality between the 1st Piola-Kirchhoff stress and the gradient of the virtual
displacements. As one of the last classic books on theoretical mechanics in the German
literature, also Hamel (1967) applied the principle of virtual work to continuous bodies.

In the French literature there has been a renaissance of the concept of virtual work,
or more precisely “Les puissances virtuelles”, in the context of continuum mechanics
induced by the publications of Germain, i.e. Germain (1972), Germain (1973a), Germain
(1973b). Therein, first gradient and second gradient theories as well as continua with
microstructure have been applied by the postulation of virtual work principles. One
important contribution is the “Axiom of Power of Internal Forces” which corresponds to
the variational formulation of the law of interaction. Another important contribution is
the recognition, that also external stress contributions can be considered in a gradient
theory. A rather mathematical approach to the idea of duality in mechanics has been
developed in Nayroles (1971). A discussion about the stress tensor as dual object to
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a strain distribution has been given by Moreau (1979). The treatment of continuum
mechanics using the principle of virtual work as its fundamental law of mechanics can be
found in introductory textbook form by Germain (1986) and Salençon (2001).

The principle of virtual work is often used, when a coupling between different theories
is demanded. Maugin (1980) has formulated a coupling between the theory of electro-
magnetism and mechanics formulating a virtual work principle. A coupling between non-
equilibrium thermodynamics and mechanics has been formulated by Biot (1974). In the
publication of Del Piero (2009), the internal virtual work is deduced from an invariance
of the virtual work of the external force under change of observer. The equivalence of
the principle of virtual work and the integral laws under certain regularity conditions has
been shown in Antman and Osborn (1979).

Noll already recognized the importance of a differential geometric point of view on
continuum mechanics and introduced the idea to regard a body as a smooth manifold,
see Noll (1959) . In the well-known treatise on the foundations of elasticity, Marsden and
Hughes (1983) have formulated body and space as Riemannian manifolds. The funda-
mental law of covariant elasticity has been considered as an invariance principle of energy,
proposed in a non-differential geometric setting by Green and Rivlin (1964). An appli-
cation of the covariant theory to solids, rods and plates has been treated by Simo et al.
(1988). In Kanso et al. (2007) a new differential geometric interpretation of the stress
tensor as a covector-valued differential two-form is given. A concise differential geometric
consideration of the kinematics of the body and the space as manifolds has been presented
by Aubram (2009).

A formulation of continuum mechanics in an intrinsic differential geometric setting
is discussed in the seminal work of Segev (1986b). In the sense of analytical mechanics,
forces of nth gradient theories are defined by duality. Using the concepts of jet-bundles and
covariant derivatives, force representations for the gradient theories have been found. The
virtual work principle is formulated as a mathematical compatibility condition between a
force of the continuum and a stress representation. When the physical space is equipped
with a connection, the variational stress of a first gradient theory is obtained as a linear
map of the covariant derivative of the virtual displacement field to a volume form of
the body. To date, perhaps the only existing work on intrinsic differential geometric
formulation of continuum mechanics stems from Segev and his supervisor Epstein. The
first steps in the development of this theory can be found in Epstein and Segev (1980)
and in the dissertation of Segev (1981). Segev (1984) gives an application of the intrinsic
theory to the special case, where the physical space is assumed as R3 and the body as a
closed subset of the former. More explanations and focus on the fundamental questions
of the intrinsic theory, can be found in Segev (1986a), Segev (2000), Segev and Rodnay
(2000). An application of the theory to micro-structure has been presented in Segev
(1994). In a recent review article Segev (2013) summarizes most of his publications. Due
to the high level of abstraction in the intrinsic formulation, it is possible to contribute
also in completely different fields, as the application to general relativity of Segev (2002)
shows. Due to the relaxation of the continuity assumptions and due to the generalization
of the concept of stress, completely new fields, such as fractal mechanics (see Epstein
and Elzanowski (2007)), have been developed. Recently, an introductory textbook on the
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geometric understanding of continuum mechanics has been published by Epstein (2010).

Beam Theory

There exists a vast amount of treatises on the topic of beam theory. A very classical
treatment of the mathematical theory of elasticity with application to beams is given
by Love (1944). The beam equations are obtained by applying the balance of linear
and angular momentum at an infinitesimal beam element. A textbook with plenty of
applications and examples on beams is Sokolnikoff (1946). Villaggio (2005) introduces
beams on the one hand as an approximation of the three-dimensional elastic theory and
on the other hand as directed curves. Classical linear beam theories are discussed in
Bauchau and Craig (2009). For linear theories of beams, including beams with warping
fields, we refer to Hjelmstad (2005). An extensive treatise on nonlinear beam theories is
given in Antman (2005), where almost any possible interpretation of beams is discussed.
Outstanding is the chapter on generalized beam theories which relies on Antman (1976),
in which beams are considered as constrained continuous bodies. A concise introduction
to intrinsic special Cosserat beam theory is given by Ballard and Millard (2009). A
discussion about two-director Cosserat beams also dealing with beam constitutive laws
is part of Rubin (2000). A theory of beams deduced at an infinitesimal beam element
and reformulated to a virtual work expression can be found in Wempner (1973). For a
textbook including more involved cross section deformations we refer to Hodges (2006).

The plane and linear Timoshenko beam has originally been developed in Timoshenko
(1921) and Timoshenko (1922). The treatment of the same kinematical assumption for
large displacements but small strains has been given by Reissner (1972) for the plane and
by Reissner (1981) for the spatial case. Another derivation for the spatial Timoshenko
beam has been obtained by Simo (1985). Considering the Timoshenko beam as a con-
strained continuum, Clerici (2001) induces the weak and strong variational form of the
Timoshenko beam from the virtual work principle of a three-dimensional continuous body.
The same approach is proposed by Auricchio et al. (2008).

The plane Euler–Bernoulli beam has been formulated as an induced theory by Epstein
and Murray (1976a). A spatial version is discussed in Hodges et al. (1980). The Kirchhoff
beam, originating from Kirchhoff (1876), is treated in a more modern version by Dill
(1992).

Augmented beam theories are theories, in which the cross sections are not restricted
to remain plane and rigid. Classically, as proposed by Cosserat and Cosserat (1909), such
theories are formulated by intrinsic director theories, where the equations of motion are
obtained by an invariance principle of a stated action. The theory of one-dimensional
Cosserat media are included in Naghdi (1980) and Cohen (1966) and a theory of directed
curves with further constraints is developed in Naghdi and Rubin (1984). An intrinsic
and an induced theory for more than two directors are discussed by Epstein (1979) and
Epstein and Murray (1976b). For beam theories with warping fields we refer to Hodges
(1987), Danielson and Hodges (1988), Danielson and Hodges (1987) and Simo and Vu-
Quoc (1991). Beam theories with in-plane warping are applied in Papes (2012) and
Bauchau and Han (2014).
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1.4 Aim and Scope

As stated in Section 1.1, to obtain the essential objects of mechanics and to recognize
the fundamental laws of mechanics, a high level of mathematical abstraction is aspired.
An intrinsic differential geometric description, as proposed in the contributions of Segev,
seems the appropriate level of abstraction for the formulation of continuum mechanics.
Just as important are the formulation of further assumptions and concepts to arrive in
a rigorous way at very specific theories. The scope of this thesis lies in an intrinsic
differential geometric approach to first gradient continuum mechanics. For the case of
a Euclidean three-space as the physical space, the discussion on beam theories serves as
a playground to show how specific theories can be induced. The aims of this research
monograph are:

− to introduce the reader to the differential geometric objects required for an intrinsic
differential geometric description of a first gradient continuum,

− to combine the intrinsic differential geometric approach of Segev with the mechanical
principles of a first gradient theory stated by Germain,

− to define beams, in an induced sense, as three-dimensional continuous bodies with
constrained position fields,

− to show that the principle of virtual work of a continuous body is the adequate
principle to induce arbitrary beam theories, classical as well as augmented beam
theories.

The main philosophy of this thesis is that the virtual work is THE invariant quantity
in mechanics.

1.5 Outline

This monograph is divided in two parts which can be read independently. Part I is
devoted to the foundations of continuum mechanics formulated in an intrinsic differential
geometric way. Part II deals with beam theories, which are considered as induced theories
from a three-dimensional theory of a continuous body.

Part I begins in Chapter 2 with an intertwined introduction to differential geometric
concepts together with the definition of required mechanical objects. First, the body and
the physical space are introduced as differentiable manifolds. Subsequently, the configura-
tion manifold of all embeddings of the body into the physical space and the representation
of its tangent vectors, the virtual displacements, are discussed. Finally, the notion of an
affine connection is treated which serves as an additional geometric structure for the physi-
cal space. Applying the concept of the virtual work, forces are defined as linear functionals
on the space of virtual displacements. Chapter 3 discusses the representation of forces of
a first gradient continuum in accordance with the achievements of Segev. Furthermore
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the principle of virtual work for the case of classical continuum mechanics is formulated
and applied to the Euclidean space as a choice of the physical space.

Part II begins with Chapter 4, which first repeats some results from the previous
part about the dynamics of a continuous body within the Euclidean space. Subsequently,
perfect bilateral constraint stresses which may guarantee constrained position fields of a
continuous body are discussed. Finally, different approaches to beam theories are pre-
sented. Using the constrained position field of a classical nonlinear beam, Chapter 5,
induces the weak and the strong variational form of the classical beam from the virtual
work principle of the continuous body. The equations of motion of the beam are then
completed in a semi-induced sense by an intrinsic constitutive law, relating internal gen-
eralized forces of the beam with generalized strain measures. Imposing further constraints
on the Timoshenko beam, Euler–Bernoulli and Kirchhoff beams are obtained. Chapter 6
presents the linearization of the classical nonlinear beam theory around a reference config-
uration which leads to the classical linear beam theory, valid for small displacements and
small rotations. The constitutive laws are formulated as well in an intrinsic setting and
relate the internal generalized forces with the linearized generalized strains. Similar to
the nonlinear theory, Timoshenko, Euler–Bernoulli and Kirchhoff beams are induced by
imposing further constraints. As an example of a fully induced theory, Chapter 7 derives
the weak and the strong variational form of the classical linearized beam theories in the
case of planar motion. Applying non-admissible virtual displacements to the principle of
virtual work, the total stress field of the constrained continuous body is obtained up to
certain indeterminacies. Chapter 8 is devoted to augmented beam theories which allow
for cross section deformation. Applying the same procedure as for the classical nonlinear
theory, the weak and the strong variational form of the nonlinear two-director Cosserat
beam and the nonlinear Saint–Venant beam are induced from the principle of virtual work
of a continuous body.

Separated into the two parts of the monograph, finally, concluding remarks on the
thesis and an outlook on further scientific questions are given in Chapter 9. Moreover,
the merit of the thesis is discussed in detail.





PartI
On the Foundations of Continuum Mechanics

“In the concept of force lies the chief difficulty in the whole of mechanics.”

Hamel, letter to Truesdell, 14. Oct. 1952.
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Chapter2
Kinematics

In this chapter we discuss the admissible kinematics of a continuous body in the physical
space from a differential geometric point of view, as it is proposed by Epstein and Segev
(1980) and Segev (1986b). A major part of the chapter deals with the introduction of
the necessary differential geometric concepts. These geometric concepts are then directly
applied to the description of a first gradient continuum as a model of a deformable body.

Section 2.1 introduces the objects of continuum mechanics, the body and the physical
space as manifolds. The idea to regard a body as a smooth manifold originates from
Noll (1959) and is applied explicitly by Epstein and Segev (1980). In Section 2.2, tangent
bundles, vector fields and global flows are defined to formulate the idea of a smooth spatial
virtual displacement field. In Section 2.3, we introduce the configuration as a mapping
between manifolds and discuss the infinite dimensional manifold structure of the set of
all differentiable mappings. Furthermore, we introduce pullback tangent bundles which
are required to represent elements of the tangent space of the configuration manifold,
i.e. virtual displacement fields. In Section 2.4, we give a brief introduction to affine
connections.

2.1 Body and Space

Many definitions of differential geometric concepts require notions from point set topology.
We refer to textbooks like Munkres (2000) for a detailed treatise on that topic. For the
sake of completeness, we briefly introduce the necessary terminology of topology.

A topology on a set X is a collection T of subsets of X having the three properties
that (i) the empty set ∅ and the set X itself are elements of T , (ii) the union of the
elements of any subcollection of T is contained in T , and (iii) the intersection of the
elements of any finite subcollection of T is in T . A topological space is the ordered pair
(X, T ) consisting of a set X and a topology T on X. Elements of T are called open sets,
their complements closed sets. An open set U ∈ T containing P ∈ X is called an open
neighborhood of P . A topological space (X, T ) is called a Hausdorff space if for each pair
of distinct points of X, there exist open neighborhoods of these points, that are disjoint.
A space X is said to be compact if any open covering of X contains a finite subcollection
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that also covers X. A function x : X1 → X2 between two topological spaces (X1, T1) and
(X2, T2) is said to be continuous if for each open subset V of X2, its preimage under x,
i.e. x−1(V ), is an open subset of X1. If a function x : X1 → X2 is continuous and bijective
with continuous inverse, then x is called a homeomorphism. The function x is said to be
proper if for every compact set K ⊂ X2, the preimage x−1(K) is compact.

We define the closed n-dimensional upper half-space Hn ⊂ Rn as the set

Hn := {(a1, . . . , an) ∈ Rn | an ≥ 0} .

For n > 0, we denote the interior and the boundary of Hn by IntHn and ∂Hn, respectively,
which are defined as

IntHn := {(a1, . . . , an) ∈ Rn | an > 0} ,
∂Hn := {(a1, . . . , an) ∈ Rn | an = 0} .

For the case n = 0, H0 := R0 = {0}, so IntH0 = R0 and ∂H0 = ∅.

Definition 2.1 (Topological Manifold with Boundary). An n-dimensional topological
manifold with boundary M is a Hausdorff space (X, T ) with a countable basis and the
property, that every point P of X has an open neighborhood U(P ) ⊂ M, which is
homeomorphic to an open set of Hn.

The pair (U, x) consisting of an open neighborhood U ⊂M and a homeomorphism x,
which maps the open neighborhood U to an open set of Hn, is called a coordinate chart on
M. We call (U, x) an interior chart if x(U) is an open subset of Hn such that x(U)∩∂Hn =
∅, and we call it a boundary chart if x(U) is an open subset of Hn such that x(U)∩∂Hn 6=
∅. A point P ∈M is called an interior point of M if it is in the domain of some interior
chart. It is a boundary point ofM if it is in the domain of a boundary chart that maps P to
∂Hn. The boundary ofM, denoted by ∂M, is the set of all boundary points. The interior
of M is the set of all interior points, denoted by IntM. For an interior chart (U, x), the
canonical projection πi : Rn → R, (a1, . . . , an) 7→ ai induces the function xi : U(P ) →
V ⊂ R, xi := πi ◦ x, which extracts the i-th component of the homeomorphism x and is
called the component function of x. The n-tuple (x1(P ), . . . , xn(P )) ∈ Hn is called the
coordinate description of P . For a boundary point Q ∈ ∂M the coordinate description is
the n-tuple (x1(Q), . . . , xn−1(Q), 0) ∈ Hn where the n-th component is zero.

If (U, x) and (Ũ , x̃) are two charts such that U ∩ Ũ 6= ∅, the composite map x̃ ◦
x−1 : x(U ∩ Ũ) → x̃(U ∩ Ũ) is called the transition map from x to x̃. The transition
map relates two different coordinate descriptions of the same point on the manifold which
is referred to as change of coordinates. Many of the discussed concepts are depicted in
Figure 2.1 at the example of a 2-dimensional topological manifold with boundary.

If U and V are open subsets of Rm and Rn, respectively, a function γ̂ : U → V is
said to be Ck-continuous or in short Ck if each of its component functions is k-times
continuously differentiable. The function γ̂ is called smooth or C∞ if all its component
functions have continuous partial derivatives of all orders. If a Ck-continuous function is
also bijective and has a Ck-continuous inverse map, it is called a Ck-diffeomorphism. For
the case, that a bijective function and its inverse map are smooth, the function is called
a diffeomorphism. Let ρ̂ be a map from a subset, possibly closed, D ⊂ Rn to Rn. The
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Figure 2.1: Illustration of a 2-dimensional topological manifold with boundary. The chart
(U, x) and (Ũ , x̃) are interior and boundary charts, respectively. The point P is an interior
point, the point Q is a boundary point.

function ρ̂ is called a (Ck-)diffeomorphism if at each point x ∈ D, it admits an extension
to a (Ck-)diffeomorphism, defined on an open neighborhood of x in Rn, cf. Lee (2012),
App. C.

Two charts (U, x) and (Ũ , x̃) are said to be smoothly compatible if either U ∩ Ũ = ∅
or the transition map x̃ ◦ x−1 is a diffeomorphism. We define an atlas for M to be a
collection of charts whose domains cover M. An atlas A is called a smooth atlas if any
two charts in A are smoothly compatible with each other. A smooth atlas A on M is
maximal when any chart that is smoothly compatible with every chart in A, is already
contained in A.

Definition 2.2 (Smooth Manifold with Boundary). An n-dimensional smooth manifold
with boundary (or in short smooth manifold) is an n-dimensional topological manifold
with boundary with a maximal smooth atlas A.

One possibility to define an n-dimensional smooth manifold without boundary is to ex-
change the upper half space Hn by Rn in the previous definitions about smooth manifolds
with boundary. Another possibility, which we choose here, is to define an n-dimensional
smooth manifold without boundary as a smooth manifold with boundary, whose boundary
∂M is the empty set ∅.

Definition 2.3 (Body). A body is a compactm-dimensional smooth manifold with bound-
ary. Typically, a body will be denoted by B and its dimension by m. A point P of the
body B is called a material point of the body.

Neither Rm nor the upper half space Hm are compact sets with respect to the standard
topology. Hence, these cannot be bodies by Definition 2.3. Nevertheless, non-compact
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bodies are often used in linear elasticity, cf. for instance Landau and Lifshitz (1986). In the
following, we rely on some important mathematical results which do not allow relaxing the
compactness assumption. Furthermore, it is worth noticing that the geometric definition
of a body does not require metric concepts, such as length or angles. These are information
of the body which are obtained by an embedding of the body into the physical space, which
is defined in the following way.

Definition 2.4 (Physical Space). Let n ≥ m. The physical space is an n-dimensional
smooth manifold S without boundary. A point Q of the physical space S is called a space
point.

2.2 Spatial Virtual Displacement Field

When not stated differently, M and N are henceforth smooth manifolds of dimensions
m and n, respectively. Let γ : N → M be a map, P ∈ N and (V, x) be a chart on M
such that γ(P ) ∈ V . Furthermore, let (U, θ) be a chart on N with P ∈ U and γ(U) ⊂ V .
Then γ has, as depicted in Figure 2.2, a local representation around P by the composition
map γ̂ := x ◦ γ ◦ θ−1 : Hn → Hm. The function γ is said to be Ck-continuous or in short
Ck if for each P ∈ N the local representation γ̂ is Ck. The function γ is called smooth or
C∞, if the local representation for each point P ∈ N is smooth. The set of all Ck and C∞

functions between N and M are denoted by Ck(N ,M) and C∞(N ,M), respectively.
If γ ∈ Ck(N ,M) is bijective with a Ck-continuous inverse map, the function is called a
Ck-diffeomorphism. In the case of a smooth function with a smooth inverse, the function
is called a diffeomorphism. We denote the set of all smooth real-valued functions by
C∞(M) := C∞(M,R).

Definition 2.5 (Germ). Let U, V and W ⊂ U ∩ V be open neighborhoods of a point
P ∈ M. Given real-valued smooth functions f : U → R and g : V → R, we define an
equivalence relation ∼P as follows:

f ∼P g ⇔ ∃W open neighborhood of P : f ≡ g on W .

A germ of f at P is the equivalence class

[f ]P := {g : V → R | g smooth function in P, (g, V ) ∼P (f, U)} .

The set of all germs at P is denoted by C∞P (M).

Let [f ]P and [g]P be germs at P and λ ∈ R. With the operations

λ[f ]P + [g]P = [λf + g]P ,

[f ]P [g]P = [fg]P ,

[f ]P (P ) = f(P ) ,

the set of all germs C∞P (M) constitute a real vector space.
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Figure 2.2: Illustration of a function between a one- and a two-dimensional manifold.

Definition 2.6 (Tangent Space). A linear map v : C∞P (M) → R is called a derivation
on C∞P (M), if for all [f ]P , [g]P ∈ C∞P (M) the Leibniz rule

v([fg]P ) = f(P )v([g]P ) + v([f ]P )g(P ) (2.1)

holds. The set TPM of all derivations on C∞P (M) is called the tangent space of M at P .

Proposition 2.1. Let u,v ∈ TPM, [f ]P ∈ C∞P (M) and λ ∈ R. Defining addition and
scalar multiplication as

(u + v)([f ]P ) := u([f ]P ) + v([f ]P ) ,

(λu)([f ]P ) := λu([f ]P ) ,
(2.2)

the tangent space at P is a vector space.

Proof. Let u,v ∈ TPM, [f ]P , [g]P ∈ C∞P (M) and λ ∈ R. We need to show that an
arbitrary linear combination λu+v is linear and satisfies the Leibniz rule (2.1). Linearity
of λu + v follows directly from the definitions of addition and scalar multiplication (2.2).
The Leibniz rule for the linear combination follows by linearity and straight forward
computation:

(λu + v)([f ]P [g]P ) = λu([f ]P [g]P ) + v([f ]P [g]P )

(2.1)
= λf(P )u([g]P ) + λu([f ]P )g(P ) + f(P )v([g]P ) + v([f ]P )g(P )

= f(P )(λu + v)([g]P ) + (λu + v)([f ]P )g(P ) .

Definition 2.7 (Induced Partial Derivative). Let (U, x) be a chart on M, P ∈ U and
f : U → R a smooth function. We define an induced partial derivative at P on M for
i ∈ {1, . . . ,m} as

∂xi |P ([f ]P ) := ∂i(f ◦ x−1)|x(P ) , (2.3)

where ∂i denotes the i-th partial derivative on Rm.
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Using the definition of the induced partial derivative together with the product rule of
Rm, it can easily be shown that the induced partial derivative at P is a linear map which
satisfies the Leibniz rule (2.1) and consequently is a derivation on C∞P (M).

Theorem 2.1. Let (U, x) be a chart onM and P ∈ U . The derivations (∂x1 |P , . . . , ∂xm|P )
form a basis of the tangent space TPM. Consequently, applying a vector v ∈ TPM on a
germ [f ]P ∈ C∞P (M), the vector can be represented as a linear combination

v([f ]P ) = v([xi]P )∂xi|P ([f ]P ) = vi∂xi |P ([f ]P ) , (2.4)

where summation over repeated indices is applied and the components vi are defined as
v([xi]P ).

Proof. For the proof we refer to Michor (2008), Sec. 1.8 or to Kühnel (2013), Sec. 5.6.

Excluded analytic functions, each germ of a smooth function has a representative
which is defined on the whole M, cf. Michor (2008). Thus, we henceforth omit the
brackets designating the equivalence class, defining a germ of a smooth function at a
point on a manifold.

The definition of tangent vectors of M at a point P as the set of all derivations on
C∞P (M) is a coordinate free and consequently chart independent definition. Nevertheless,
in applications, charts have to be chosen and it is of major interest how objects trans-
form under a change of coordinates. In the following, we show how the basis and the
components of a tangent vector transform. Let (U, x) and (Ũ , x̃) be charts of M and
let P ∈ U ∩ Ũ . The definition of the induced partial derivative (2.3) together with the
chain rule from higher dimensional calculus implies a transformation rule for a change of
coordinates. Let f ∈ C∞(M), then by a telescopic expansion it follows

∂x̃i|P (f)
(2.3)
= ∂i(f ◦ x̃−1)|x̃(P ) = ∂i(f ◦ x−1 ◦ x ◦ x̃−1)|x̃(P )

= ∂j(f ◦ x−1)|x(P )∂i(x
j ◦ x̃−1)|x̃(P ) = Λj

i∂xj |P (f) ,

where we have recognized the transformation matrix Λj
i := ∂i(x

j◦x̃−1)|x̃(P ). By an abuse of
notation, where a point in Hm is named by the coordinate function x̃i, the transformation
matrix is often introduced as Λj

i = ∂xj

∂x̃i
, cf. for instance Göckeler and Schücker (1989). The

transformation is independent of the choice of the smooth function f and we summarize
the important result as follows:

∂x̃i |P = Λj
i∂xj |P , Λj

i := ∂i(x
j ◦ x̃−1)|x̃(P ) . (2.5)

Let v ∈ TPM. The components ṽi = v(x̃i) of the coordinate representation in the
chart (Ũ , x̃) can be transformed further using the component representation of v in the
chart (U, x), i.e.

ṽi = v(x̃i)
(2.4)
= vj∂xj |P (x̃i)

(2.3)
= ∂j(x̃

i ◦ x−1)|x(P )v
j = Λ̃i

jv
j ,

with the transformation matrix Λ̃i
j := ∂j(x̃

i ◦x−1)|x(P ). Hence, the transformation rule for
the components of a tangent vector is

ṽi = Λ̃i
jv
j , Λ̃i

j := ∂j(x̃
i ◦ x−1)|x(P ) .
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Definition 2.8 (Cotangent Space). For each P ∈M, the cotangent space at P , denoted
by T ∗PM, is the dual space to TPM. An element of the cotangent space is called a
covector.

Let dxi|P ∈ T ∗PM denote a dual basis to ∂xj |P which satsifies dxi|P (∂xj |P ) = δij.
According to (A.5), a covector ω ∈ T ∗PM can be represented as a linear combination

ω = ωidx
i|P ,

with the components ωi = ω (∂xi |P ). Let (U, x) and (Ũ , x̃) be charts of M and let
P ∈ U ∩ Ũ . Using (2.5), the transformation rule of the component ω̃i follows by linearity
and duality of the base vectors

ω̃i = ω(∂x̃i)|P
(2.5)
= ωkdx

k|P (Λj
i∂xj |P ) = Λj

iωj .

Thus, the transformation rule for the components of a covector is

ω̃i = Λj
iωj , Λj

i = ∂i(x
j ◦ x̃−1)|x̃(P ) , (2.6)

which is the same as for the base vectors of a tangent vector. Since the transforma-
tion (2.6) is performed by Λj

i , i.e. the ‘inverse’ of Λ̃j
i , it is classically called contravariant

transformation. A covector ω has its representation as a linear combination for any chart.
Hence, the transformation of the components of a covector (2.6) immediately implies the
transformation rule of the dual base vectors dxi|P by

ω = ωjdx
j|P = Λ̃i

jω̃idx
j|P = ω̃idx̃

i|P .

The transformation rule for the dual base vectors is

dx̃i|P = Λ̃i
jdx

j|P , Λ̃i
j = ∂j(x̃

i ◦ x−1)|x(P ) ,

which is the same transformation rule as for the components of a tangent vector, i.e. a
covariant transformation.

Definition 2.9 (Tangent Bundle). The tangent bundle ofM is the triple (TM, πM,M),
where TM denotes the disjoint union of the tangent spaces at all points of M

TM :=
⋃
P∈M

{P} × TPM .

The manifoldM is the base space and πM denotes the natural projection πM : TM→M.
The bundle projection maps v ∈ TM to its base point P ∈M.

Definition 2.10 (Cotangent Bundle). The cotangent bundle of M is the triple (T ∗M,
πM,M), where T ∗M denotes the disjoint union of the cotangent spaces at all points ofM

T ∗M :=
⋃
P∈M

{P} × T ∗PM .

The manifold M is the base space and πM denotes the natural projection πM : T ∗M→
M. The bundle projection maps ω ∈ TM to its base point P ∈M.



20 Chapter 2. Kinematics

The tangent and cotangent bundle have again the structure of a manifold, cf. Lee
(2012) or Michor (2008). All upcoming operations on elements of the tangent bundle
TM do not act on the base points. Hence, we often use the slight abuse of notation by
referring to the vectorial part of v ∈ TM by the same symbol, i.e. “v = (P,v)”. For any
other bundle structure we do the same. From the context, however, it will be clear which
object is meant.

Definition 2.11 (Vector Field). A vector field onM is a section of the map πM : TM→
M. That means, it is a continuous map v : M→ TM with the property that

πM ◦ v = IdM .

The set of Ck-continuous sections on TM is denoted by Ck(TM). The set of smooth
sections is denoted by Γ(TM).

Let (U, x) be a chart on M and v ∈ Γ(TM), then the value of v can be represented
at any point P ∈ U in coordinates as

v(P ) = (x(P ), vi(P )∂xi |P ) .

This defines m functions vi : U → R, called the component functions of v in the given
chart.

Definition 2.12 (Smooth Global Flow). A smooth global flow on M is a smooth map
ϕ : R×M→M satisfying the following properties for all ε1, ε2 ∈ R and P ∈M :

ϕ(ε1, ϕ(ε2, P )) = ϕ(ε1 + ε2, P ) , ϕ(0, P ) = P . (2.7)

Let f ∈ C∞(M) and P ∈ M, then a smooth global flow ϕ : R ×M →M induces a
smooth vector field δϕ ∈ Γ(TM) defined by

δϕ(P )(f) = (ϕ(0, P ), δϕ(P )(f)) :=
(
P, ∂1(f ◦ ϕ)|(0,P )

)
. (2.8)

The smooth vector field δϕ is called the infinitesimal generator of ϕ. We want to empha-
size, that the δ-sign does not act as an operator and remains mainly as a decoration due
to historical reasons.

Let (U, x) be a chart onM and P ∈ U , then the infinitesimal generator is represented
at P as

δϕ(P )(f) = ∂1(f ◦ x−1 ◦ x ◦ ϕ)|(0,P ) = ∂i(f ◦ x−1)|x(P )∂1(xi ◦ ϕ)|(0,P )

= ∂1(xi ◦ ϕ)|(0,P )∂xi |P (f) = δϕi(P )∂xi |P (f) ,
(2.9)

where the component functions of the infinitesimal generator evaluated at P are identified
as δϕi(P ) := ∂1(xi ◦ ϕ)|(0,P ).

Definition 2.13 (Spatial Virtual Displacement Field). Let ϕ : R × S → S be a smooth
global flow on the physical space S with an associated infinitesimal generator δϕ ∈ Γ(TS).
The infinitesimal generator of ϕ is called the spatial virtual displacement field.
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Figure 2.3: Illustration of a pullback tangent bundle γ∗TM over a one-dimensional base
manifold N . Loosely, the pullback bundle can be thought of as a base manifold N , in which
at all points P on N and for Q = γ(P ), the tangent space TQM is attached.

2.3 Configuration Space

The following definition of the pullback bundle is illustrated in Figure 2.3.

Definition 2.14 (Pullback Tangent Bundle). Let (TM, πM,M) be the tangent bundle
and γ : N → M be a map. The pullback tangent bundle by γ is the bundle (γ∗TM,
γ∗πM,N ), where the total space is defined as

γ∗TM := {(P,v) ∈ N × TM : πM(v) = γ(P )}

and the projection γ∗πM of the pullback tangent bundle is defined as

(γ∗πM) (P,v) = P .

It can be shown that the pullback tangent bundle is a fiber bundle. For the definition
of a fiber bundle we refer to textbooks like Saunders (1989) or Husemöller (1994). Let
γ ∈ Ck(N ,M) and v ∈ Γ(TM). Then the pullback section γ∗v is a Ck-section of γ∗TM.
The evaluation of the section at P is

γ∗v(P ) = (P,v(γ(P ))) .

Let P ∈ N and (V, x) be a chart on M with γ(P ) ∈ V . Then for each P ∈ N the
evaluation of γ∗v at P can be represented as

γ∗v(P ) =
(
P,
(
(x ◦ γ)(P ), (vi ◦ γ)(P )(∂xi ◦ γ)|P

))
.

Let ṽ : N → TM be a Ck-continuous function such that πM(ṽ) = γ, then ṽ is called a
vector field along γ. For an appropriate chart (U, x) onM and for each P ∈ N the vector
field along γ is represented in coordinates as

ṽ(P ) =
(
(x ◦ γ)(P ), ṽi(P )(∂xi ◦ γ)|P

)
.
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The pullback section γ∗v and the vector field ṽ along γ differ only in the additional
base point in the pullback section. Hence, the isomorphism between the set of pullback
sections Ck(γ∗TM) and the set of vector fields along γ is obvious. Since a pullback section
contains more geometric structure than a vector field along γ, we prefer in the following
the pullback section.

Definition 2.15 (Differential). Let k > 0 and γ : N →M be a Ck-continuous map. The
differential Dγ(P ) of γ at P is a linear map

Dγ(P ) : TPN → Tγ(P )M

such that for v ∈ TPN and f ∈ C∞(M)

Dγ(P )v(f) = v(f ◦ γ) . (2.10)

Let P ∈ N , (V, x) be a chart on M with γ(P ) ∈ V and let (U, θ) be a chart on
N with P ∈ U and γ(U) ⊂ V . Then the coordinate representation of the differential
Dγ(P ) applied to a tangent vector v ∈ TPN is derived using the local representation
γ̂ := x ◦ γ ◦ θ−1 as follows:

Dγ(P )v(f)
(2.10)
= v(f ◦ γ) = v(f ◦ x−1 ◦ γ̂ ◦ θ) (2.4)

= vi∂θi |P (f ◦ x−1 ◦ γ̂ ◦ θ)
(2.3)
= vi∂i(f ◦ x−1 ◦ γ̂)|θ(P ) = vi∂j(f ◦ x−1)|x(γ(P ))∂iγ̂

j|θ(P )

(2.3)
= ∂iγ̂

j|θ(P )v
i∂xi |γ(P )(f) = F j

i (P )vi∂xi |γ(P )(f) ,

(2.11)

where in the last line we have made use of the component functions F j
i := ∂iγ̂

j ◦ θ.

Definition 2.16 (Tangent Map). Let k > 0 and γ : N → M be a Ck-continuous map
inducing the pullback tangent bundle (γ∗TM, γ∗πM,N ). Then the tangent map Tγ is
defined as the bundle homomorphism over N

Tγ : TN → γ∗TM
(P,v) 7→ (P, (γ(P ), Dγ(P )v(P ))) ,

(2.12)

satisfying the commutative diagram:

TN γ∗TM

N

Tγ

πN γ∗πM

Definition 2.17 (Embedding). A Ck-continuous and proper map γ : N →M is called a
Ck-embedding if its tangent map Tγ is injective. The set of all Ck-embeddings is denoted
by Embk(N ,M).
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The analysis of mappings between manifolds is an important part of the theory of
global analysis, cf. Palais (1968), Michor (1980), Kriegl and Michor (1997). For a short
historical overview of the theory of manifolds of mappings, which started in the late fifties
with Eells (1958), we refer to Marsden (1974). The beginning of global analysis was
strongly influenced by the works of Eells (1966), Eliasson (1967) and Palais (1968). The
special case of embeddings is treated in Binz and Fischer (1981). For the application of
global analysis in physics, we refer to Marsden (1974) and Binz et al. (1988).

Theorem 2.2 (Manifold Structure of Ck(N ,M), Binz et al. (1988), Thm. 5.4.1). Given
two smooth manifolds N and M of which N is compact and M without boundary. Then
for each integer k < ∞ the set Ck(N ,M) is a smooth manifold modeled over Banach
spaces, i.e. Ck(N ,M) is a Banach manifold.

Proof. For a proof and a discussion about the topology of Ck(N ,M), we refer to Binz
et al. (1988).

Definition 2.18 (Configuration). Let B be a body and S the physical space. We define
the configuration of a first gradient continuum (or continuous body) to be a C1-embedding
κ of the body B into the physical space S. The set of all C1-embeddings, i.e. Emb1(B,S),
is called the configuration manifold Q.

As recognized by Segev (1986b), the requirement that a configuration of a body into
physical space is an embedding, is based upon two classical principles, cf. Truesdell and
Toupin (1960), Sec. 16. These are, the permanence of matter and the principle of impen-
etrability. The former states that no region of positive finite volume is deformed into one
of zero or infinite volume. The latter states that one portion of matter never penetrates
within another. In order that the set of configurations admits the structure of a manifold,
Theorem 2.2 requires a body B to be a compact manifold.

Definition 2.19 (Virtual Displacement Field). Let δϕ ∈ Γ(TS) be the spatial virtual
displacement field and κ ∈ Q. Then the virtual displacement field of a continuous body
is defined as the pullback section δκ = κ∗δϕ ∈ C1(γ∗TS).

Theorem 2.3 (Tangent Space of Ck(N ,M)). Let N and M be manifolds of which N is
compact and M without boundary. For any map γ ∈ Ck(N ,M), the tangent space at γ
TγC

k(N ,M) is isomorphic to the set of pullback sections Ck(γ∗TM).

The identification of the tangent space at γ with Ck-sections of the pullback tangent
bundle, is stated in Segev (1986b). For a proof it is referred to Palais (1968), Eliasson
(1967) and Michor (1980). Also in Simo et al. (1988) the same identification without a
proof is stated with reference to Abraham et al. (1988) and Ebin and Marsden (1969). In
Abraham and Smale (1963) the isomorphism is mentioned merely as a note of Thm. 11.1
without proof. Nevertheless, a complete proof for the above stated assumptions could
neither be found nor can be given in this thesis by the author. Strongly related results with
proof can be found in Binz et al. (1988), Thm. 5.4.3, for the case of smooth mappings γ.
Using the assumption of a Riemannian manifold N , Eliasson (1967) “Corollaries for Ck”,
serves as a reference. Inspired by Binz et al. (1988), we prove one direction which should
support the reasonability of the theorem.



24 Chapter 2. Kinematics

Idea of Proof. Let ϕ : R×M→M be a global flow onM. Then the composition function

ϕ̃ : R×N →M , (ε, P ) 7→ ϕ̃(ε, P ) = ϕ(ε, γ(P ))

defines a smooth curve through the Ck(N ,M) manifold. The poperties of a global
flow (2.7) imply that

ϕ̃(0, ·) = γ .

Let f ∈ C∞(M) and P ∈ N . Then the composition function ϕ̃ induces the section
γ∗δϕ̃ ∈ Ck(γ∗TM) defined by

γ∗δϕ̃(P )(f) = (P, (ϕ̃(0, P ), δϕ̃(P )(f))) =
(
P,
(
γ(P ), ∂1(f ◦ ϕ̃)|(0,P )

))
.

Let (U, x) be a chart on M and γ(P ) ∈ U . Then by (2.9), the section through the
pullback tangent bundle can locally be represented as

γ∗δϕ̃(P ) =
(
P,
(
(x ◦ γ)(P ), (δϕi ◦ γ)(P )(∂xi ◦ γ)|P

))
.

A tangent vector can alternatively be defined, cf. Aubin (2001), by an equivalence class
of curves which pass with the same velocity through the same point on the manifold.
The composition function ϕ̃ is such a curve through Ck(N ,M). Since the section γ∗δϕ̃ is
obtained by taking the velocity of the smooth curve ϕ̃ at γ, a tangent vector of Ck(N ,M)
induces a section through the pullback tangent bundle γ∗TM. The inverse, to show that
a section Ck(γ∗TM) induces a smooth curve through Ck(N ,M) and that the involved
mappings are bijective are necessary to finish the proof of the isomorphism rigorously.

Corollary 2.1. The tangent space to Embk(N ,M) at γ is isomorphic to TγC
k(N ,M).

Proof. According to Binz and Fischer (1981) the set Embk(N ,M) is open in the set of
Ck(N ,M).

Due to Theorem 2.3, the virtual displacement field of a continuous body δκ ∈ C1(κ∗TS)
can be identified with an element of the tangent space TκQ. This follows the tradition of
analytical mechanics, where the virtual displacements are tangent vectors to the finite-
dimensional configuration space, cf. Arnold (1989).

2.4 Affine Connection

Definition 2.20 (Affine Connection). Let u,v ∈ Γ(TM) and f ∈ C∞(M). An (affine)
connection on M is a mapping ∇ which assigns to every pair u,v another vector field
∇uv ∈ Γ(TM) with the following properties:

(a) ∇uv is bilinear in u and v ,

(b) ∇fuv = f∇uv ,

(c) ∇u(fv) = f∇uv + u(f)v .

(2.13)

We call ∇uv the covariant derivative of v along u.
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Let (U, x) be a chart on M, then we define the m3 functions Γkij by

∇∂xi
(∂xj) = Γkij∂xk . (2.14)

The Γkij are called the Christoffel symbols of the connection ∇.

Definition 2.21 (Covariant Derivative). Let ω ∈ Γ(T ∗M) and u ∈ Γ(TM). For every
vector field v ∈ Γ(TM) we consider the tensor field ∇v ∈ Γ(TM⊗ T ∗M) defined by

∇v(ω,u) := ω(∇uv) . (2.15)

The tensor field ∇v is called the covariant derivative of v.

Let (U, x) be a chart onM, then v = vi∂xi and∇v = vi;j∂xi⊗dxj. Notice the semicolon
in the component of the covariant derivative. This has its origin from index notation, in
which only components of the tensors are written. The semicolon distinguishes between
partial derivative, i.e. application of the base vectors to the components of a vector, and
covariant derivative of a vector field. According to the representation of a tensor as a linear
combination (A.9) together with (2.13b) and (2.14), we obtain the component functions
of the tensor field as

vi;j = ∇v(dxi, ∂xj)
(2.15)
= dxi(∇∂

xj
(vk∂xk))

= dxi(∂xj(v
k)∂xk + vkΓljk∂xl) = ∂xj(v

i) + Γijkv
k .

Definition 2.22 (Covariant Derivative of Pullback Section). Let γ ∈ Ck(N ,M), a ∈
Γ(TN ), v ∈ Γ(TM) with the associated pullback section γ∗v ∈ Ck(γ∗TM) and ω ∈
Ck(γ∗T ∗M). Let M be equipped with an affine connection ∇. Then, for every pullback
section γ∗v, the tensor field (γ∗∇)(γ∗v) ∈ Ck(γ∗TM⊗ T ∗N ) over N is defined as

(γ∗∇)(γ∗v)(ω, a) := ω(γ∗(∇Tγav)) . (2.16)

The tensor field (γ∗∇)(γ∗v) is called covariant derivative of γ∗v.

Let (U, θ) be a chart on N and let (V, x) be a chart on M such that γ(U) ⊂ V .
Let v ∈ Γ(TM) be defined on the whole of V . Then the covariant derivative of the
pullback section γ∗v corresponds to a tensor field (γ∗∇)(γ∗v) = (γ∗vi);j(∂xi ◦ γ) ⊗ dθj.
The computation of the component functions of the tensor field follows (A.9), i.e.

(γ∗vi);j = (γ∗∇)(γ∗v)(dxi ◦ γ, ∂θj)
(2.16)
= (dxi ◦ γ)(γ∗(∇Tγ∂

θj
v)) .

Let γ̂ = x ◦ γ ◦ θ−1 be the local representation of γ around P ∈ U . Using (2.11),
the vectorial part of the tangent map Tγ of a vector field ∂θj ∈ Γ(TN ) can locally be
represented as

Dγ ∂θj = (∂j γ̂
i ◦ θ) ∂xi |γ(·) = F i

j (∂xi ◦ γ) . (2.17)
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Let P ∈ U . Using a telescopic expansion and applying the chain rule, we show the
following identity:

∂θj |P (vi ◦ γ)
(2.3)
= ∂j(v

i ◦ x−1 ◦ x ◦ γ ◦ θ−1)|θ(P ) = ∂k(v
i ◦ x−1)|(x(γ(P ))(∂j γ̂

k ◦ θ)(P )

= ∂xk |γ(P )(v
i)F k

j (P ) .
(2.18)

Using property (2.13b) and the local representation by the Christoffel symbols (2.14) we
compute:

γ∗(∇Tγ∂
θj

v)
(2.17)
= F i

jγ
∗((∂xi(v

k)∂xk + vkΓrik∂xr)|γ(·))

(2.18)
= (∂θj(v

k ◦ γ) + (vr ◦ γ)(Γkir ◦ γ)F i
j )(∂xk ◦ γ) .

Hence, the component functions of the covariant derivative of γ∗v are represented locally
as

(γ∗vi);j = ∂θj(v
k ◦ γ) + (vr ◦ γ)(Γkir ◦ γ)F i

j . (2.19)

Example 2.1. Let N = I be an interval of R, γ : I → M be a curve on M and
v ∈ Γ(TM). An illustrative application of the covariant derivative of a pullback section
is its correlation to the covariant derivative of v along a curve γ, denoted by ∇γ̇v. For the
definition of a covariant derivative of v along a curve γ we refer to Abraham and Marsden
(1978), Def. 2.7.3. Let (I, θ = IdI) and (U, x) be charts on I and M, respectively, then
F i

1 = ∂1(xi ◦ γ). Using (2.16) and (2.19), we obtain a vector field v along γ when taking
the covariant derivative of γ∗v along ∂θ, i.e.

(γ∗∇)(γ∗v)(·, ∂θ) =
(
∂θ(v

k ◦ γ) + (vr ◦ γ)(Γkir ◦ γ)∂1(xi ◦ γ)
)

(∂xk ◦ γ) = ∇γ̇v .

Since θ is the identity map, the induced partial derivative ∂θ and the partial derivative ∂1

coincide. For every t ∈ I, the covariant derivative of γ∗v along ∂θ

(γ∗∇)(γ∗v)(·, ∂θ)(t) =
(
∂1(vk ◦ γ)|t + vr(γ(t))Γkir(γ(t))∂1(xi ◦ γ)|t

)
(∂xk ◦ γ)|t = ∇γ̇(t)v

corresponds to the covariant derivative of v along γ.



Chapter3
Force Representations

This chapter introduces the concept of force, states the principle of virtual work of a
continuous body, discusses admissible force representations and concludes with the appli-
cation to classical nonlinear continuum mechanics. In Section 3.1, forces are defined as
linear functionals on the space of virtual displacements and the principle of virtual work
for the continuous body is formulated. Subsequently, the force representation of Segev
(1986b) by smooth tensor measures is introduced. In Section 3.2 the applied forces are
restricted to a subclass of possible forces and the equations of motion of a continuous
body mapped to the Euclidean vector space are derived.

3.1 Principle of Virtual Work

For this chapter, let B and S be the body and the physical space according to Definition 2.3
and 2.4, respectively, with dimensions m = n = 3. The configuration of a continuous
body is a C1-embedding, i.e. κ ∈ Q = Emb1(B,S). The space of virtual displacements
at a configuration κ is the tangent space TκQ to the infinite dimensional configuration
manifold Q, which is, due to Theorem 2.3, represented by the set of pullback sections
C1(κ∗TS). By pointwise scalar multiplication and pointwise addition, the set of pullback
sections constitute a linear infinite dimensional vector space.

Definition 3.1 (Forces). Let C1(κ∗TS) be the space of virtual displacements of the
continuous body. The space of forces is the set of real-valued linear functionals

C1(κ∗TS)∗ := {f : C1(κ∗TS)→ R : f linear} . (3.1)

An element of C1(κ∗TS)∗ is called a force of a continuous body. Let δW := f(δκ) be
the real number obtained by the evaluation of a force f ∈ C1(κ∗TS)∗ acting on a virtual
displacement δκ ∈ C1(κ∗TS). The real number δW is called the virtual work of the
continuous body.

Classically, people have had difficulties to define the concept of force. Thomson and
Tait (1867), Par. 217, define a force as any cause which tends to alter a body’s natural

27
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state of rest, or of uniform motion in a straight line. So, force is wholly expended in the
action it produces. Kirchhoff (1876) already recognized that the perception to artificially
split a mechanical process in action and reaction is disadvantageous. Mechanics is pri-
marily interested in describing the mechanical process as a whole. However, Kirchhoff
(1876) has refused to give a definition of a force. In more recent literature, Noll (1959)
and Truesdell (1977) have dared to define forces as vector valued measures. Due to the
representation theorem of Riesz-Markov, cf. Rudin (1987), in our framework, such forces
can be represented by elements of the dual space of C0-continuous sections of the pull-
back bundle κ∗TS. Hence, Definition 3.1 and the definition of Noll and Truesdell do not
coincide.

As the fundamental principle of mechanics, we postulate the principle of virtual work
of a continuous body as an axiom.

Principle 3.1 (Principle of Virtual Work of a Continuous Body). Let f ∈ C1(κ∗TS)∗ be
a force of a continuous body B. Then, the principle of virtual work states, that the virtual
work of a continuous body vanishes for all virtual displacements, i.e.

δW = f(δκ) = 0 ∀δκ ∈ C1(κ∗TS) .

A force of a continuous body in the principle of virtual work, consists of all forces acting
on that body. Further specifications, representations and the introduction of force laws
are the next steps in the modeling process towards a proper description of the behavior
of a deformable body. It is worth noticing, that this is another viewpoint on the principle
of virtual work as it is given by Epstein and Segev (1980), who interpret the principle of
virtual work as a mathematical compatibility between a force of the continuous body and
its stress representation. To obtain the classical and established equations of motion of a
continuous body, further assumptions and choices have to be done. The first assumption
is to equip the physical space with further geometrical structure and redefine it as follows.

Definition 3.2 (Physical Space). Let n ≥ m. The physical space is an n-dimensional
smooth manifold S without boundary with an affine connection ∇. A point Q of the
physical space S is called a space point.

Remark, that the affine connection is independent of the choice of a metric, a symmet-
ric and positive definite covariant tensor field of rank two. If there is a metric available,
then it is convenient, but not necessary, to define an affine connection as the Levi-Civita
connection, which is the unique metric compatible and torsion free affine connection, cf.
Kühnel (2013), Thm. 5.16. Doing so, we lose degrees of freedom to model the physical
space and to describe desired mechanical behavior of the space. A chart independent for-
mulation of accelerated frames, for instance, requires the concept of vector bundles. Such
a vector bundle consists of a one-dimensional Riemannian base space, modeling the time,
together with a typical fiber of a three-dimensional Euclidean vector space, modeling the
real space. The acceleration of the frame can then be described by an affine connection,
whose definition corresponds to the choice of an inertial frame.

According to (3.1), forces of a continuous body are from the space C1(κ∗TS)∗. A
relation to the definition of forces as vector valued measures is obtained by a representation
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theorem proposed by Segev (1986b). According to Definition 2.22, the connection ∇ of
the physical space implies a covariant derivative (κ∗∇)(δκ) ∈ C0(κ∗TS ⊗ T ∗B) of the
virtual displacement δκ ∈ C1(κ∗TS). Hence, the covariant derivative is a C0-section
through the tensor bundle κ∗TS ⊗ TB∗ over B. We introduce the function

∇ : C1(κ∗TS)→ C0(κ∗TS ⊕ (κ∗TS ⊗ T ∗B))

δκ 7→ (δκ, (κ∗∇)(δκ)) ,

where ⊕ denotes the direct sum. With reference to Segev (1986b), for the space of linear
functionals on the image of ∇, the identity

C0(κ∗TS ⊕ (κ∗TS ⊗ T ∗B))∗ = C0(κ∗TS)∗ ⊕ C0(κ∗TS ⊗ T ∗B)∗ (3.2)

holds. Thus, using the function ∇ together with the identity (3.2) and the representation
theorem of Riesz-Markov, a force of a continuous body f ∈ C1(κ∗TS) has a representation
by a collection of tensor measures (f0, f1) ∈ C0(κ∗TS)∗⊕C0(κ∗TS⊗T ∗B)∗. Consequently,
the virtual work of a continuous body can be represented as1

δW = f(δκ) =

∫
B
δκdf0 +

∫
B
(κ∗∇)(δκ)df1 .

It is important to note, that the tensor measures (f0, f1) are not uniquely determined by f .
The measure f0 corresponds to forces defined as vector valued measures, cf. Noll (1959).
The tensor measure f1 includes the stress tensor of classical continuum mechanics.

Let (U, x), (V, θ) and (W,λ) be appropriate charts on S, B and ∂B, respectively. Then
a smooth section β ∈ Γ(κ∗T ∗S ⊗ Λ3T ∗B) can be represented in coordinates as

β = βi123(dxi ◦ κ)⊗ dθ1 ∧ dθ2 ∧ dθ3 (A.21)
= βi123(dxi ◦ κ)⊗ dθ123 , (3.3)

which describes a body force, i.e. a force per volume. A smooth section τ ∈ Γ(κ∗T ∗S ⊗
Λ2T ∗∂B) is considered as a traction force, i.e. a force per surface, which is locally repre-
sented as

τ = τi12(dxi ◦ κ)⊗ dλ1 ∧ dλ2 (A.21)
= τi12(dxi ◦ κ)⊗ dλ12 .

The evaluation of the tensor field β of body forces (3.3) at a point on the body is a
tensor of rank 4, in which the last three tensor slots are alternating. Let δκ ∈ C1(κ∗TS)
be a virtual displacement. By a slight abuse of notation, we introduce the convention to
denote the mapping from C1(κ∗TS) to Γ(Λ3T ∗B) by

β(δκ) := β(δκ, ·, ·, ·) . (3.4)

Hence, β(δκ) ∈ Γ(Λ3T ∗B) is a volume form which can be integrated over the body B.
For the traction τ the convention holds in a similar way.

1We refer to Brezis (2010), Prop. 9.20, for a similar representation theorem for functions of the Sobolev
space W 1,p

0 (Ω) on a subset Ω ⊂ Rn.
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Assuming that B is orientable, then the smooth sections β and τ induce a stress
measure f0 by ∫

B
δκdf0 =

∫
B
β(δκ) +

∫
∂B
τ (δκ) .

Similar to the body and traction forces, we consider the variational stress π ∈
Γ(κ∗T ∗S ⊗ TB ⊗ Λ3T ∗B), which can locally be represented as

π = πji123 (dxi ◦ κ)⊗ ∂θj ⊗ dθ1 ∧ dθ2 ∧ dθ3 = πji123 (dxi ◦ κ)⊗ ∂θj ⊗ dθ123 . (3.5)

Applying the convention (3.4) to π and requiring B to be orientable, the smooth sections
π induce a tensor measure f1 by∫

B
(κ∗∇)(δκ)df1 =

∫
B
π((κ∗∇)(δκ)) =

∫
B
π(δF) , (3.6)

where δF := (κ∗∇)(δκ) has been recognized.
Due to the high continuity assumptions on the virtual displacement field, forces such

as point forces, line distributed forces, traction forces within the body an many more
cannot be described. A relaxation to piecewise continuous virtual displacement fields has
to be discussed to allow for a broader spectrum of forces which is inevitable in mechanics.

3.2 Classical Nonlinear Continuum Mechanics

Following the assumptions of classical nonlinear continuum mechanics, cf. Truesdell and
Toupin (1960), external forces are assumed to be given by vector valued measures f0 only.
The corresponding virtual work contributes negatively to the total virtual work as

δW ext = −
∫
B

df0(δκ) . (3.7)

Within a first gradient theory, Germain (1972) allows also external forces to be given by f1

tensor measures.
The internal forces are modeled as “short range forces”. Thus, the internal forces are

restricted to f1 tensor measures. Due to (3.6), this implies the virtual work contribution

δW int =

∫
B
π((κ∗∇)(δκ)) . (3.8)

Such an identification of the force representatives of internal forces, seems rather arbitrary.
Assuming the physical space S to be Riemannian, i.e. a manifold with a metric, the
identification of internal forces can be deduced from an additional fundamental principle.
The additional principle is the law of interaction, which defines the internal forces of an
arbitrary subsystem B′ ⊂ B. We give here just a short outlook and an idea without
proofs, how the law of interaction can be formulated on manifolds. Let g ∈ Γ(T ∗S⊗T ∗S)
be a metric on the physical space and δϕ ∈ Γ(TS) be the spatial virtual displacements.
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Let Lδϕg denote the Lie derivative of g with respect to δϕ, cf. Lee (2012). We define a
Killing vector field δϕ ∈ Γ(TS) to be a vector field satisfying

Lδϕg = 0 . (3.9)

The space of Killing vector fields is denoted by Γk(TS). The requirement (3.9) can be
considered as a local symmetry of the physical space. In terms of a Levi-Civita connection
on S, (3.9) can be transformed and represented locally as

δϕk;jgki + δϕk;igkj = δϕi;j + δϕj;i = 0 ,

where semicolon denotes the covariant derivative. This condition for rigidifying virtual
displacement fields and also the following variational form of the law of interaction has
already been formulated by Murnaghan (1937). Let the spatial virtual displacement field
δϕ ∈ Γk(TS) be a Killing vector field. We denote the induced virtual displacement
field δκ = κ∗δϕ by δκ rigidifying. Then the law of interaction asks the internal forces
f int ∈ C1(κ∗TS)∗ to satisfy

δW int = f int(δκ) = 0 ∀δκ rigidifying .

Let the Euclidean three-space E3 be the physical space. Then, for smooth force repre-
sentatives it can be shown, that the internal virtual work has to be of the form (3.8).
Additionally, a symmetry condition for the first two components of the variational stress
π is obtained2.

Using the virtual work contribution of the external and internal forces (3.7) and (3.8),
respectively, the metric independent virtual work principle of a continuous body of (3.1)
is restated for the classical choice of force representatives.

Principle 3.2 (Principle of Virtual Work of Classical Continuum Mechanics). Let π ∈
Γ(κ∗T ∗S⊗TB⊗Λ3T ∗B) and f0 ∈ C0(κ∗TS)∗ be the force representatives of f ∈ C1(κ∗TS).
Then, the principle of virtual work of a continuous body B states, that the virtual work

δW = δW int + δW ext =

∫
B
π((κ∗∇)(δκ))−

∫
B

df0(δκ) = 0 ∀δκ ∈ C1(κ∗TS) . (3.10)

vanishes for all virtual displacements.

In the local representation of the variational stress (3.5), the three last slots of the
tensor are constituted by a volume form. Let dV = ρ dθ1∧dθ2∧dθ3 = ρ dθ123 be a volume
element on the body B, i.e. a nowhere vanishing volume form on B. Then the variational
stress can be transformed to

π = πji123 (dxi ◦ κ)⊗ ∂θj ⊗ dθ123 = ρ−1πji123(dxi ◦ κ)⊗ ∂θj dV = PdV , (3.11)

2Notice, symmetry condition does not mean that the two first components of π are symmetric. Such a
statement is meaningless, since both components belong to different vector spaces. Hence, the symmetry
condition will include metric information as well as the tangent map Tκ.
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where P j
i = ρ−1πji123 and P = P j

i (dxi ◦ κ)⊗ ∂θj . Notice that P as an independent object,
generally denoted as the stress tensor, is not a tensor field. By splitting-off of the volume
element dV from the variational stress π, the tensor property is destroyed. At most, P can
be considered as a tensor valued density. This explains the awkward transformation rules
for the different stress tensors in classical nonlinear continuum mechanics, cf. Truesdell
and Noll (1965). Nevertheless, the internal virtual work (3.8) as a whole remains an
invariant quantity and using (3.11), it can be transformed further to

δW int =

∫
B

P(δF) dV =:

∫
B

P : δF dV , (3.12)

where we introduced the commonly used notation of the double contraction.

Example 3.1. Let the physical space S be the three-dimensional Euclidean space E3 with
the Levi-Civita connection ∇ and let (E3, x) be a cartesian chart, i.e. the base vectors
(∂x1 , ∂x2 , ∂x3) are orthonormal with respect to the given metric. Furthermore, assume
that the body can be described by a single chart (B, θ) and let dV = dθ123 ∈ Γ(Λ3T ∗B)
be the volume element. Due to the cartesian chart x, the Christoffel symbols vanish in
the covariant derivative (2.19). Denote the duality pairing by a dot (·) and introduce
t̂i := P i

k(dx
k ◦ κ). Then, the internal virtual work (3.12) is transformed further to

δW int =

∫
B
∂θi(δκ

j(∂xj ◦ κ)) · P i
k(dx

k ◦ κ) dθ123 =

∫
B
∂θi(δκ) · t̂i dθ123 .

Let B := θ(B) be the domain of the body in the chart θ and use the composite functions
δξ := δκ ◦ θ−1 and ti := t̂i ◦ θ−1. The local representation of the internal virtual work in
the body chart follows as

δW int =

∫
B

∂i(δκ ◦ θ−1) · (t̂i ◦ θ−1) dθ1dθ2dθ3 =

∫
B

∂i(δξ) · ti dθ1dθ2dθ3

=

∫
B

δξ,i · ti d3θ ,

where in the last line the partial derivative ∂i and the volume element dθ1dθ2dθ3 are
abbreviated by (·),i and d3θ, respectively. Note, that the integration of the volume form
over the body manifold B is defined by the integration of the chart representation in R3,
cf. Lee (2012).

Assume furthermore that the cartesian chart of E3 is an inertial chart. A motion
κt : B × R → E3 of the body is a differentiable parametrization of configurations with
respect to time t ∈ R. Thus, at a given instant of time t the closed subset Ωt = κt(B) ⊂ E3

is covered by the body manifold. The coordinate representation of the motion is the vector
valued function

ξ : B× R→ E3, (θk, t) 7→ ξ = κt ◦ θ−1(θk) = ξ(θk, t) .

Let dm be a mass distribution on B. Then, we assume the inertia force to contribute as

δW dyn =

∫
B

δξ · ξ̈ dm (3.13)
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to the total virtual work of the body, where the superposed dot (•̇) denotes the derivative
with respect to time t. Since the cartesian chart is restricted to be an inertial chart, the
introduction of inertia forces (3.13) is chart dependent and does not fit into the geometric
concepts proposed otherwise Part I. To describe the virtual work of inertia forces in an
intrinsic differential geometrical setting, an extension of the physical space as discussed
previously below Definition 3.2 is necessary.

Example 3.2. Let the physical space S be the three-dimensional Euclidean space E3

with the Levi-Civita connection ∇. Furthermore, let (E3, X) be a cartesian chart and the
body B be a closed subset of E3. Hence, the body chart and the space chart coincide. The
coordinate description of the boundary of the body ∂B is given by the chart (∂B, Y ). Let
the volume element be dV = dX1∧dX2∧dX3 and the surface element dA = dY 1∧dY 2.
Assume the external forces to be given by body forces β ∈ Γ(κ∗T ∗E3 ⊗ Λ3T ∗E3) and
traction forces τ ∈ Γ(κ∗T ∗E3 ⊗ Λ2T ∗∂B). Using the volume element dV and the surface
element dA, the body and the traction forces can be represented in the sense of (3.11) as
β = BdV and τ = TdA. Together with the abbreviations dxi := dX i◦κ and ∂xi := ∂Xi◦κ,
the negative virtual work contribution of the external forces can locally be represented as

−δW ext =

∫
B

df0(δκ) =

∫
B
β(δκ) +

∫
∂B
τ (δκ) =

∫
B

B(δκ)dV +

∫
∂B

T(δκ)dA

=

∫
B
Bidx

i(δκj∂xj)dV +

∫
∂B
Tidx

i(δκj∂xj)dA

=

∫
B
Biδκ

idV +

∫
∂B
Tiδκ

idA .

Since the body is a subset of the Euclidean space, the connection on the body is given
by the Levi-Civita connection of the space. Within cartesian coordinates, the Christoffel
symbols vanish and the internal virtual work contribution (3.12) is locally represented as

δW int =

∫
B
π(δF) =

∫
B

P(δF)dV =

∫
B
(P j

i dxi ⊗ ∂Xj)(∂Xl(δκk)∂xk ⊗ dX l)dV

=

∫
B
P j
i ∂Xj(δκi)dV .

For the remainder of this example the derivations are performed in the chart representa-
tion. The principle of virtual work (3.10) of the continuous body in the body chart X
is

δW =

∫
B

P j
i ∂j(δκ

i)dV −
∫
B

Biδκ
idV −

∫
∂B

Tiδκ
idA = 0 , ∀δκi ∈ C1(B) , (3.14)

where B = B ∪ ∂B denotes the domain of the body in the chart. The virtual work
expression (3.14) is generally known as the weak variational form of the continuous body.
Using a telescopic expansion together with the product rule and the theorem of Gauss-
Ostrogradsky, cf. Başar and Weichert (2000), the virtual work is transformed further to
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the strong variational form

δW =

∫
B

P j
i ∂j(δκ

i)dV −
∫
B

Biδκ
idV −

∫
∂B

Tiδκ
idA

=

∫
B

{
P j
i ∂j(δκ

i)− ∂j(P j
i δκ

i)︸ ︷︷ ︸
(?)

+∂j(P
j
i δκ

i)
}

dV −
∫
B

Biδκ
idV −

∫
∂B

Tiδκ
idA

=

∫
B

{
−∂j(P j

i )δκi + ∂j(P
j
i δκ

i)
}

dV −
∫
B

Biδκ
idV −

∫
∂B

Tiδκ
idA

= −
∫
B

{
(∂j(P

j
i ) +Bi)δκ

i
}

dV −
∫
∂B

{
(Ti − P j

i Nj)δκ
i
}

dA ,

(3.15)

where Nj denote the components of the normal vector to the boundary ∂B. Since (3.15)
has to vanish for all δκi ∈ C1(B), the strong variational form together with the Funda-
mental Lemma of Calculus of Variations leads to

0 = ∂jP
j
i +Bi in B ,

Ti = P j
i Nj on ∂B .

which constitute the equations of motion of the continuous body and the boundary condi-
tions. Notice, that the derivation (3.15) relies on cartesian coordinates and for the theorem
of Gauss-Ostrogradsky, introducing the normal vector, a metric is required. Hence, the
strong variational formulation in (3.15) is obtained by a coordinate- and metric-dependent
derivation. To formulate a complete coordinate- and metric-independent description of
classical continuum mechanics, this derivation must be performed on the manifold using
concepts from differential geometry. Such a coordinate- and metric-independent formula-
tion can be found in Segev (1986b) and in a more elaborate way in Segev (2013). Segev
(2013) defines the divergence of the stress tensor in the sense of the subtraction (?) which
does not simplify in a coordinate free setting. This explains the artificial intermediate
step of the second line in (3.15).

In Example 3.1, we have formulated the virtual work contributions of a continuous
body moving in the Euclidean three-space. Therein, we have obtained the virtual work
contributions which are required to start with the second part of the thesis dealing with
beam theories. Concluding remarks on Part I can be found in Chapter 9.



PartII
Beam Theories

“Tatsächlich ist aber in der kurzen Zeit eines Menschenlebens und bei
dem begrenzten Gedächtnis des Menschen ein nennenswertes Wissen
nur durch die grösste Oekonomie der Gedanken erreichbar.”

E. Mach, Die Mechanik in ihrer Entwicklung, 1883.
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Chapter4
Preliminaries

In this chapter we discuss the fundamental mechanical principles which are necessary
for the formulation of induced beam theories. In order that Part II remains more or
less self-contained, Section 4.1 repeats some results of the first part about the dynamics
of a continuous body within the Euclidean space. Section 4.2 introduce the concept of
perfect constraint stresses which are required that the motion of a continuous body follows
a constrained position field. In Section 4.3, we discuss an appropriate description of a
beam-like body and introduce the classification into intrinsic, induced and semi-induced
beam theories.

4.1 Fundamental Principles of a Continuous Body

We adhere to the convention that pairs of Latin indices are summed from 1 to 3 and pairs of
Greek indices are summed from 1 to 2. When a function depends on the three components
(a1, a2, a3) or on the first two components (a1, a2) of a triple a ∈ R3, the argument is
abbreviated by (ai) or (aβ), respectively. We consider a three-dimensional continuous body
B as a three-dimensional compact differentiable manifold with boundary. In order to avoid
discussions about mathematical subtleties, we assume in the following that the body can
be covered by a single chart θ, see Figure 4.1. Hence, every material point P ∈ B can be
described by three coordinates (θ1, θ2, θ3) ∈ B ⊂ R3, where B := θ(B). A configuration κ ∈
Emb1(B,E3) is a C1-embedding of the body into the Euclidean three-space E3, where the
Euclidean three-space represents the physical space. The configurations are restricted to
embeddings, which are proper injective immersions. Thus, the principle of impenetrability
and the permanence of matter is guaranteed by the choice of the kinematics. Since the
configuration maps the material points P to the Euclidean three-space, which is a vector
space, the placement of a material point κ(P ) can be represented by the position vector
ξ ∈ E3. A motion κt : B × R → E3 of the body is a differentiable parametrization of
configurations (or current configurations) with respect to time t ∈ R. Thus, at a given
instant of time t, the closed subset Ωt = κt(B) ⊂ E3 is covered by the body manifold.

37
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Figure 4.1: Schematic overview of the kinematics of the body manifold B.

Using the chart θ, the coordinate representation of the motion is the vector valued function

ξ : B× R→ E3, (θk, t) 7→ ξ = κt ◦ θ−1(θk) = ξ(θk, t) ,

also denoted as the position field. Note that we are using the same symbol for the vari-
ables ξ as for the functions whose results they are. In the following we will mainly work
with the coordinate representation of the motion and treat motion and coordinate rep-
resentation of the motion synonymously. We consider only cartesian base vectors for E3

to avoid the concept of covariant derivatives. Additionally, this assumption allows to
commute derivatives with respect to θi and derivatives with respect to a variation param-
eter ε.

A variational family of the position field is a differentiable parametrization of motions
ξ̂(θk, t, ε) with respect to a single parameter ε ∈ R. The actual motion is embedded in
the family ξ̂ and is obtained for ε = ε0, i.e. ξ(θk, t) = ξ̂(θk, t, ε0). The variation of the
position field ξ is defined as

δξ(θk, t) :=
∂ξ̂

∂ε
(θk, t, ε0) .

Let i ∈ {1, 2, 3} and (i, j, k) be an even permutation of (1, 2, 3), then we introduce the
fields of covariant base vectors gi(θ

k, t), its corresponding variations δgi(θ
k, t) and its

associated contravariant base vectors gi(θk, t) as

gi := ξ,i , δgi = δξ,i , gi := g−1/2(gj × gk) , g1/2 := g1 · (g2 × g3) ,

where partial derivatives ∂(·)/∂θk are abbreviated by (·),k. The co- and contravariant
base vectors fulfill the reciprocity condition gi · gj = δij.

The formulation of the fundamental principle of the dynamics of a continuous body
demands the postulation of three contributions to the virtual work. The first contribution
represents the internal virtual work δW int of the continuous body which is formulated in
the body chart θ as

δW int(δξ) :=

∫
B

σ : (δgi ⊗ gi)g1/2d3θ =

∫
B

ti · δgi d3θ , (4.1)
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where d3θ = dθ1dθ2dθ3. The stress vector ti(θk, t) can be recognized in the Cauchy stress
tensor σ(ξ(θk, t), t) = g−1/2 ti ⊗ gi. Let the indices (i, j, k) be an even permutation of
(1, 2, 3), then the stress vector ti corresponds to the traction in the current configuration
which acts at the surface element gj × gk dθjdθk = gig1/2 dθjdθk. A similar formulation
of the internal virtual work (4.1) can also be found in Antman (2005), Sec. 16.2. The
remaining two contributions to the virtual work are those of the inertia and the external
forces df which contribute as

δW dyn(δξ) :=

∫
B

δξ · ξ̈ dm , δW ext(δx) := −
∫

B

δξ · df , (4.2)

where the superposed dot (•̇) denotes the derivative with respect to time t. We consider
the mass distribution dm and the force distribution df as measures, allowing for Dirac-
type contributions as well.

As the first fundamental principle of a continuous body, we postulate the principle of
virtual work as an axiom.

Principle 4.1 (Principle of Virtual Work). At any instant of time t, the virtual work δW
of the body B vanishes for all virtual displacements δξ, i.e.

δW (δξ) = δW int(δξ) + δW dyn(δξ) + δW ext(δξ) = 0 ∀δξ,∀t . (4.3)

Beside the virtual work principle, the law of interaction for internal forces has to be
respected as a second axiom. In Glocker (2001), Sec. 2, the law of interaction is stated for
force and couple distributions. A variational form of the law of interaction corresponds
to the “Axiom of Power of Internal Force” formulated by Germain (1973a). In the case
of particle mechanics the law of interaction coincides with “Newton’s Law of Action and
Reaction”. For a variational formulation of the law of interaction, a special subset of
virtual displacements is required. Virtual displacements are called rigidifying if they are
induced by a rigid body motion of the continuous body.

Principle 4.2 (Law of Interaction). At any instant of time t, the internal virtual work
of the body B vanishes for all rigidifying virtual displacements, i.e.

δW int(δξ) = 0 ∀δξ rigidifying,∀t . (4.4)

Since the considered mechanical system is a continuous body and the law of interaction
has to be fulfilled for all bodies, including any subbody B′ ⊂ B, it is shown in Eugster
et al. (2014), that the law of interaction for a smooth stress distribution can be formulated
in the following local form:

gi × ti = 0 ∀θk ∈ B ,∀t . (4.5)

This requirement corresponds to the symmetry condition of the Cauchy stress tensor.
When the body coordinates are chosen such that they coincide with the cartesian co-
ordinates of the Euclidean space, we can rewrite (4.5) as ei × σijej = 0. Due to the
orthonormality of the base vectors ei, we directly obtain the three symmetry conditions
of the Cauchy stress, i.e. σ12 = σ21, σ13 = σ31 and σ23 = σ32.
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4.2 Constrained Position Fields

To formulate induced beam theories, one has to study constrained position fields of a
continuous body. Since the constraints are treated as pointwise conditions in time, t is an
inessential parameter which is omitted in the notation for the sake of clarity. For a given
body chart θ and at every instant of time t, the configuration manifold of the continuous
body is given by all possible configurations of the body which form the infinite dimensional
manifold K := Emb1(B,E3). Let A be a finite or infinite dimensional manifold and
x : A → K be an embedding. For a ∈ A, the embedding x induces a position field
ξ = x(a) of the continuous body. The submanifold C := x(A) ⊂ K represents all position
fields which can be described by the embedding of A in K and is called the constraint
manifold. A configuration ξ ∈ C is called a constrained position field. The tangent space
at the point ξ ∈ C to the constraint manifold is denoted by TξC. Elements of the tangent
space TξC are called admissible virtual displacements. Let a ∈ A and ξ = x(a), then the
differential of x

Dx(a) : TaA → TξC , δa 7→ δξ = Dx(a)δa , (4.6)

induces admissible virtual displacements.
Assume a continuous body with a position field ξ whose dynamics is described by the

principle of virtual work (4.3). To constrain the position field ξ such that it remains on the
constraint manifold C, a constraint stress field tiC(θk, t) with a virtual work contribution

δW int
C :=

∫
B

tiC · δξ,i d3θ

is introduced1. The stress contribution of (4.1) is renamed as tiI and is called an impressed
stress field. Consequently, a continuous body with position field ξ ∈ C which is enforced
to follow a constrained position field, is exposed to a total stress field

ti(θk, t) := tiI(θ
k, t) + tiC(θk, t) , (4.7)

which is composed by an impressed and a constraint stress field. Hence, the dynamics of
a continuous body with a constrained position field is described by the principle of virtual
work (4.3) with the total stress field (4.7). The constraint stresses are said to be perfect,
if the constitutive law is given by the principle of d’Alembert–Lagrange, which states that
the virtual work of the constraint stresses

δW int
C (δξ) =

∫
B

tiC · δξ,i d3θ = 0 ∀δξ ∈ TξC,∀t . (4.8)

Let a ∈ A induce the constrained position field ξ = x(a) and assume the admissible
virtual displacements δξ = Dx(a)δa =: δx ∈ TξC. Then the virtual work of the per-
fect constraint stresses (4.8) vanishes for all δa ∈ TaA. To obtain the weak variational
form of a constrained continuous body in a minimal description, the principle of virtual

1It is a choice that the constraint is guaranteed by a stress field. Alternatively the constraints can
also be satisfied by constraint forces dz ∈ C0(E3)∗.
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work (4.3) with the total stress field (4.7) is evaluated for the constrained position field x
together with admissible virtual displacements δx = Dxδa. Since the constraints are as-
sumed to be perfect, the constraint stress contribution vanishes for the admissible virtual
displacements δx by definition.

4.3 Intrinsic and Induced Beam Theories

A major challenge in beam theory is a rigorous definition of its central object, the beam.
A beam formulation includes loads of modeling assumptions which are hard to grasp in
their full diversity. A beam-like body can be considered as a model of a real body with one
characteristic direction. In the case of a slender body with an isotropic material behavior,
the characteristic direction coincides with the direction of the largest expansion of the
body. Hence, only additional information about the body, such as geometry or material
behavior, and its loading allows determining the characteristic direction of the body.
Another difficulty is, that there exist several theories which call their investigated object
beam, cf. for instance Antman (2005), Ballard and Millard (2009), Bauchau and Craig
(2009), Cosserat and Cosserat (1909), Lacarbonara (2013), Love (1944), Rubin (2000),
Sokolnikoff (1946), Villaggio (2005) and Wempner (1973). In this section we discuss three
different classifications of beam theories which are introduced in Antman (2005). There
are the intrinsic beam theories, the induced and the semi-induced beam theories.

Figure 4.2: Visualization of the reference and the current configuration of the intrinsic
classical beam, also denoted as Cosserat beam, q(ν, t) = (r(ν, t),d1(ν, t),d2(ν, t)) and
Q(ν) = (r0(ν),D1(ν),D2(ν)), respectively.

Basically, there exist two ways to state the dynamics of a beam-like body. The most
classical way is an intrinsic beam formulation, as it is proposed by Euler (1744), Kirchhoff
(1876) or Cosserat and Cosserat (1909) or more recently by Ballard and Millard (2009).
Since a beam-like body has but one characteristic direction, denoted by the parameter
ν ∈ [ν1, ν2] ⊂ R, we assume it as a generalized one-dimensional continuum. At every
point ν a microstructure is attached, which is described by an N -dimensional configuration
manifold of the beam Q. Hence, the motion of the beam-like body is described by finitely
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many generalized position functions

q : [ν1, ν2]× R→ Q, (ν, t) 7→ q(ν, t) , (4.9)

where t parametrizes the time. The motion can schematically be visualized such as
depicted in Figure 4.2. The reference configuration of the intrinsic beam is a time inde-
pendent map Q : [ν1, ν2]→ Q, called the reference generalized position functions. Subse-
quently, the virtual work of the generalized one-dimensional continuum is stated directly.
That means, we postulate the virtual work contributions of the internal, external and the
inertia forces of the generalized one-dimensional continuum as integrated line densities per
unit of ν and formulate a virtual work principle in the sense of (4.3) for a one-dimensional
continuum. By stating the virtual work contributions, the generalized forces are defined
in the sense of duality. To complete the formulation, intrinsic generalized strains have
to be defined and relations between these intrinsic generalized strains and the internal
generalized forces have to be stated. The benefit of an intrinsic formulation is that it is a
closed and independent theory which is often free of indeterminacy. The drawback of such
a formulation is, that much mechanical intuition is required for its successful application.
The validation of an intrinsic formulation and the determination of constitutive parame-
ters is done experimentally, cf. Hodges and Dowell (1975) or Dowell et al. (1977). Since an
intrinsic formulation is completely decoupled from a three-dimensional theory, we cannot
draw any conclusions about stress distributions of a beam in an intrinsic formulation.

In an intrinsic theory, every choice of generalized position functions q implies a different
beam formulation. Eventually, this leads to infinitely many beam theories. In order to
eliminate the intuition in the derivation of beam theories, we aspire a consistent procedure
to obtain various beam theories. This possibility is given by induced beam theories.
Induced beam theories are characterized by the following description of a beam:

A beam, in the sense of an induced theory, is a three-dimensional continuous
body with one characteristic direction where the irrelevant deformations are
eliminated by allowing merely constrained position fields for the bodies motion.

We want to mention that in the above description of a beam the terms “characteristic
direction” and “irrelevant” are undefined. The determination of these terms is part of the
modeling process and is strongly influenced by the considered application at hand.

To formulate the constrained position fields, we use the very same generalized posi-
tion functions (4.9) as introduced in the intrinsic beam formulation. At any instants of
time t, let A := C1([ν1, ν2],Q) be the set of all C1-continuous pathes on the configuration
manifold Q. An induced beam theory states now the embedding

x : A → K ,
q(·, t) 7→ ξ = x(q(·, t)) ,

(4.10)

which induces a constrained position field for the current configuration of the continuous
body. In an induced theory, the body chart is chosen such that the parametrization of
the characteristic direction ν equals the third body coordinate ν := θ3. Let ν ∈ [ν1, ν2]
and Ā(ν) :=

{
(θ1, θ2) | (θ1, θ2, ν) ∈ B

}
, then we denote the collection of material points
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ξ(Ā(ν), ν, t) of the beam-like body as the cross section of the beam. The admissible
virtual displacements

δx(·, t) = Dx(q(·, t))δq ∈ TξC (4.11)

are obtained by (4.6).
Formulating the embedding (4.10), the beam-like body is considered as a continuous

body which is enforced by perfect constraint stresses to follow a constrained position field.
Hence, the dynamics for the beam is described by (4.3) with the total stress field (4.7).
According to the principle of d’Alembert–Lagrange (4.8), the virtual work contribution of
the constraint stress field tiC vanishes for all admissible virtual displacement fields (4.11)
and at any instant of time t. Thus, a formulation of the principle of virtual work of the
constrained continuous body using the embedding x together with the generalized position
functions q, eliminates the constraint stresses and induces directly the weak variational
form of the induced beam theory. The virtual work is obtained by an integration over the
three-dimensional body which is performed by an iterated integral over the cross section
areas of the body, followed by an integration along ν. Since the generalized virtual
displacements only depend on (ν, t), these functions can be dragged outside the surface
integral. Subsequently, we define the weighted surface integrals as resultant forces. By
performing the surface integrals, the virtual work of the beam reduces to an integral of
line densities only. This reduced virtual work expression of the induced beam can then
be identified with the virtual work of an intrinsic theory.

The embedding (4.10) of an induced theory generates the connection between a three-
dimensional theory and a corresponding generalized intrinsic theory. Within an induced
beam theory, we have two possibilities to interpret the resultant forces at ν ∈ [ν1, ν2].
Either as weighted integrals of forces and stresses of the Euclidean space which are mapped
to the cotangent space T ∗q(ν,t)Q or as a generalized force of T ∗q(ν,t)Q without a relation to
the Euclidean space. The virtual work in the form of integrated line densities corresponds
to the weak variational form of the beam theory. If enough continuity assumptions on
the line densities are required, then integration by parts is possible which leads to the
strong variational form of the beam. By applying the Fundamental Lemma of Calculus of
Variations the equations of motion, the boundary and transition conditions of the beam
are obtained. The equations of motion are partial differential equations with one spatial
variable ν only. Hence, in an intrinsic setting, it is reasonable to consider a beam as a
generalized one-dimensional continuum. Nevertheless, an intrinsic formulation only makes
sense, when there exists a set of constrained position fields such that the boundary value
problem of an intrinsic theory is obtained by an identification with the boundary value
problem of an induced theory.

An induced theory shares with a three-dimensional theory that for a complete for-
mulation of the problem, constitutive laws for the resultant contact forces are required.
In an induced theory, we have defined the resultant contact forces as weighted surface
integrals which are mapped to the cotangent space of the configuration manifold of the
beam. Hence, we may introduce a three-dimensional material law for tiI which depends
on a three-dimensional strain measure. Such an induced theory is shown in Chapter 7.
Using non-admissible virtual displacements and up to a certain indeterminacy in the con-
straint stress field tiC , it is possible to find a correlation between generalized internal forces
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and the total stress field of the continuous body. In the geometrically nonlinear beam
theories of Chapter 5, 6 and 8, we formulate the constitutive law in an intrinsic setting.
Denoting partial derivative with respect to ν by a prime (·)′, we define a generalized
strain depending on q′ only and state a constitutive law for the generalized internal forces
directly. This form of a theory is called semi-induced theory, because we introduce the
generalized forces from a three-dimensional theory, identify them with an intrinsic formu-
lation and state the constitutive laws of the generalized internal forces in a generalized
setting. Within a semi-induced theory we cut the connection of the generalized internal
forces to the stress field in the Euclidean space. Hence, also in a semi-induced theory,
we cannot draw any conclusions about the stresses in the beam as a continuous body.
Assuming also set-valued force laws for the generalized internal forces, it is possible to
impose further constraints on the beam and to develop deviated beam theories from an
original formulation. This is done to show the hierarchical structure of the classical beam
theories.



Chapter5
Classical Nonlinear Beam Theories

Classical nonlinear beams from the point of view of an induced theory are continuous
bodies with a constrained position field which is described by the motion of a centerline
and the motion of plane rigid cross sections attached to every point at the centerline.
This restricted kinematics allows to determine resultant forces at each cross section and
to reduce the equations of motion of a three-dimensional continuous body to a partial
differential equation with only one spatial variable. The present chapter is partly based
on the publication of Eugster et al. (2014).

First, in Section 5.1, the kinematical assumptions are stated. Subsequently, in Sec-
tion 5.2, the virtual work contributions of the internal forces, the inertia forces and the
external forces are reformulated by the application of the restricted kinematics to the
virtual work of the continuous body. Lastly, in Section 5.3 – 5.5 we present the general-
ized constitutive laws of the geometrically nonlinear and elastic theories of Timoshenko,
Euler–Bernoulli and Kirchhoff in the form of a semi-induced beam theory.

5.1 Kinematical Assumptions

For the derivation of the classical beam theory, it is convenient to think of a slender
continuous body with an isotropic material behavior as depicted in Figure 5.1. First,
we assume at a given instant of time t a placement of the slender body in E3, at which
the body covers the subset Ωt ⊂ E3. We identify the characteristic direction of the
slender isotropic body with an arbitrarily chosen centerline r which propagates along the
largest expansion of the body. The property that the configuration ξ(·, t) at time t is an
embedding, enables us to identify every point of the continuous body in Ωt with a unique
point in the set B := ξ(·, t)−1(Ωt) ⊂ R3. Subsequently, we choose the body chart θ such
that the centerline r is parametrized by θ3 =: ν only. For a classical beam we assume the
existence of a motion given by the constrained position field of the form

ξ(θα, ν, t) = x(q(·, t))(θα, ν) = r(ν, t) + θαdα(ν, t) , (5.1)

where the generalized position functions q(·, t) are recognized as r(·, t), d1(·, t) and d2(·, t).
The centerline is given by the space curve r(·, t) = ξ(0, 0, ·, t) and is bounded by its ends
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ν = ν1 and ν = ν2 for ν2 > ν1. A customary choice of ν is the arc length parametrization s
of the centerline r. Since the arc length parametrization comes along with an additional
constraint and may change under deformation from one instant of time to another, we do
not want to restrict us to this special case. At every material point ν of the centerline r a

Figure 5.1: Reference and current configuration of the beam.

positively oriented orthonormal director triad (d1(ν, t),d2(ν, t),d3(ν, t)) is attached. The
two directors dα span the plane cross section of the beam. The current state of the cross
section ξ(Ā(ν), ν, t) is parametrized by the cartesian coordinates (θ1, θ2) ∈ Ā(ν), where
Ā(ν) :=

{
(θ1, θ2) | (θ1, θ2, ν) ∈ B

}
. The restriction to cartesian coordinates is implied

by the parametrization of the cross section by two orthonormal directors. For specific
problems, e.g. computation of the cross section area, appropriate local reparametrizations
can be performed. One could think of different descriptions of the plane which do allow
for more general coordinates, but such a generalization is outside the scope of this thesis.
The director triad (d1,d2,d3) can be related to an inertial orthonormal basis (e1, e2, e3)
by introducing for the rotation tensor R(ν, t) ∈ SO(3) such that

dk(ν, t) = R(ν, t)ek , with R = dk ⊗ ek . (5.2)

For orthonormal vector triads, we do not distinguish here between co- and contravariant
vectors. In (5.1) we have identified the generalized position functions q(·, t) with r(·, t),
d1(·, t), d2(·, t) and have constrained the directors d1(·, t) and d2(·, t) by (5.2) to remain
orthonormal. Hence, the evaluation at ν of the generalized position functions q(·, t) can
be considered as a point on the 6-dimensional manifold E3 × SO(3).

Since a beam in an induced theory is treated as a continuous body with a constrained
position field, one has to guarantee that the motion always requires the conditions of
an embedding. As long as the density of the volume form g1/2 > 0 does not vanish for
every point θk and the function remains injective, the permanence of matter and the
principle of impenetrability are fulfilled and the motion is an embedding. As an example
of how extreme such deformations can be, we assume a beam with circular cross sections of
radius r where the cross sections remain orthogonal to the tangent vector of the centerline.
As depicted in Figure 5.2, the beam is bent in-plane up to a bending radius R. As long
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Figure 5.2: Maximal allowed deformation of a beam with cross section radius r and limit
bending radius R.

as the bending radius is larger than the radius of the beam R ≥ r, no interpenetration of
the cross sections may appear. This restriction seems to be reasonable for the example at
hand. Ultimately, at the configuration where the bending radius coincides with the cross
section radius r = R, the lateral surfaces of the beam come into contact. Because of the
impenetrability condition R ≥ r, beam theories are generally limited to slender bodies
(among other reasons).

In the classical beam theory, the cross section deformation is considered to be irrelevant
for the deformation of the body. Consequently, the cross section is rigidified by the choice
of the constrained position field (5.1). This implies that material points which are on
the same cross section stay on the same cross section throughout the whole motion of
the body. The choice of the body chart together with the current configuration can be
denominated as a fibration of the continuous body. In the remainder of this section the
kinematical expressions which are necessary for the formulation of the virtual work (4.3)
of the constrained continuous body are derived.

To begin with the effective curvature, the angular velocity and the virtual rotation,
which all describe the change of the directors when changing a single parameter, e.g. the
parameter ν. Using (5.2), we derive

(dk)
′ = (R(ν, t)ek)

′ = R′RTdk =: k̃dk , (5.3)

in which we recognize the effective curvature k̃ = R′RT and denote the partial derivative
with respect to ν by a superposed prime (·)′. The effective curvature k̃ only coincides with
the curvature of a spatial curve r(ν, t) when ν corresponds to the arc length parametriza-
tion s of the spatial curve at a given instant of time t. The skew-symmetry of k̃ can easily
be shown using the SO(3) properties of the rotation tensor R:

RRT = 1
(·)′⇒ k̃

(5.3)
= R′RT = −R(RT)′ = −(R′RT)T = −k̃T .

Hence, the skew-symmetric effective curvature k̃ has an associated axial vector k(ν, t) ∈ E3

such that
(dk)

′ = k̃dk = k× dk , with k̃ = R′RT = (di)
′ ⊗ di . (5.4)

The tilde-operator will be used to denote the skew-symmetric tensor to an associated axial
vector. The components of the effective curvature can be written using the alternating
symbols εijk as

ki =
1

2
εijk(k̃)kj =

1

2
εijk(dk · (dj)′) .
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Similar to (5.4) we introduce the angular velocity ω̃(ν, t) and its associated axial vector
ω(ν, t) as

ḋk = ω̃dk = ω × dk , with ω̃ = ṘRT = ḋi ⊗ di . (5.5)

Likewise, we obtain the virtual rotation δφ̃(ν, t) and its associated axial vector δφ(ν, t)
by considering virtual variations of the directors dk, i.e. through derivation with respect
to the variation parameter ε,

δdk = δφ̃dk = δφ× dk , with δφ̃ = δRRT = δdi ⊗ di . (5.6)

The velocity and acceleration fields are introduced by taking the total time derivative of
the position field (5.1) and the kinematical relation introduced in (5.5)

ẋ = ṙ + ω × (x− r) = ṙ + ω × ρ , with ρ = x− r = θαdα ,

ẍ = r̈ + ω̇ × ρ+ ω × (ω × ρ) . (5.7)

Using (5.1) and (5.4), the partial derivatives of the constrained position field take the
form

x,α = dα , x′ = r′ + k× ρ . (5.8)

The variation of the constrained position field and insofar the admissible virtual displace-
ment field is, in accordance with (5.1) and (5.6), given by

δx = δr + δφ× ρ . (5.9)

The variation of the partial derivatives (5.8) are reformulated to

δx,α = δφ× x,α , δx′ = δr′ + δk× ρ+ k× (δφ× ρ) . (5.10)

Since cartesian coordinates are chosen, the derivative with respect to ν and the variation
commute, i.e. (δdk)

′ = δ((dk)
′) = δd′k. By (5.4) and (5.6) we write this identity as

(δφ× dk)
′ = δ(k× dk) .

Applying the product rule and using again (5.4) and (5.6) yields

δφ′ × dk + δφ× (k× dk) = δk× dk + k× (δφ× dk) .

By subtracting the left-hand side from the right-hand side, and by applying the skew-
symmetric property of the cross product and the Jacobi identity (B.1), one obtains

0 = δk× dk + k× (δφ× dk) + δφ× (dk × k)− δφ′ × dk
(B.1)
= δk× dk − dk × (k× δφ)− δφ′ × dk

= (δk− δφ× k− δφ′)× dk .

Since the right-hand side of (5.1) has to vanish for all directors dk ∈ E3 we retrieve the
important identity

δφ′ = δk− δφ× k . (5.11)



5.2. Virtual Work Contributions 49

For the formulation of constitutive laws or for the determination of mass densities it is
convenient to introduce a special configuration, called reference configuration. Let r0 and
Dα be the reference generalized position functions of Q, then the reference configuration
of the beam corresponds to the constrained position field

Ξ(θα, ν) = X(Q)(θα, ν) = r0(ν) + θαDα(ν) . (5.12)

We call the space curve r0 = Ξ(0, 0, ·) the reference curve of the beam. At each material
point of the reference curve r0 we have attached a positively oriented orthonormal director
triad (D1(ν),D2(ν),D3(ν)) which is related to the basis (e1, e2, e3) by introducing the
rotation tensor R0(ν) ∈ SO(3) such that

Dk(ν) = R0(ν)ek , with R0 = Dk ⊗ ek .

The directors Dα describe the reference state of the cross section Ξ(Ā(ν), ν). In the
formulation of constitutive laws, the reference configuration is often defined as the stress
free configuration of the body.

5.2 Virtual Work Contributions

In an induced theory, the classical nonlinear beam is a continuous body with the con-
strained position field (5.1). The dynamics of a continuous body with such a restricted
kinematics can be described by the principle of virtual work (4.3) with the total stress
field (4.7). The constraint position field (5.1) which defines the constraint manifold C ⊂ K
corresponds to the embedding (4.10) determining an induced theory. The admissible vir-
tual displacements (5.9) are directly obtained by the variation of the constrained position
field. Using the constrained kinematics (5.1), in the following section, the contributions
of the virtual work (4.3) due to the admissible virtual displacements (5.9) are determined.
Since the constraint stresses are assumed to be perfect, by the principle of d’Alembert–
Lagrange (4.8), they do not contribute to the virtual work and the weak variational
formulation of the classical nonlinear beam is obtained. By further continuity assump-
tions on the involved functions, the strong variational formulation and the corresponding
boundary value problem of the classical nonlinear beam is determined.

It is important to notice, that within this formulation we lose all information about the
constraint stresses which rigidify the cross sections. The fact that the constraint stresses
do not appear in the equations of motion does not imply that no stresses act in the cross
section.

Virtual work contributions of internal forces

Using (4.1), (5.10) and the property of the cross product of (B.2), the internal virtual
work density can be written as

ti · δx,i = δφ · (x,α×tα) + t3 · δr′ + δk · (ρ× t3) + t3 · (k× (δφ× ρ)) . (5.13)
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Employing the symmetry condition (4.5), we can rewrite the first term in (5.13) as follows:

δφ · (x,α×tα)
(4.5)
= −δφ · (x′ × t3)

(5.8,B.2)
= −t3 · (δφ× r′ + δφ× (k× ρ)) .

Using the above derived relation and the Jacobi identity (B.1), we can manipulate (5.13)
further and obtain

ti · δx,i =

= −t3 · (δφ× r′ + δφ× (k× ρ)) + t3 · δr′ + δk · (ρ× t3) + t3 · (k× (δφ× ρ))

= t3 · (δr′ − δφ× r′) + δk · (ρ× t3) + t3 · (k× (δφ× ρ) + δφ× (ρ× k))

(B.1)
= t3 · (δr′ − δφ× r′) + δk · (ρ× t3) + t3 · (ρ× (δφ× k))

(B.2)
= t3 · (δr′ − δφ× r′) + (ρ× t3) · (δk− δφ× k) . (5.14)

Since the kinematical quantities δr′ − δφ × r′ and δk − δφ × k depend merely on (ν, t),
we split the integration over B in an integration over the cross section in the body chart
Ā(ν) and an integration along ν ∈ (ν1, ν2)

δW int =

∫
B

ti · δx,i d3θ
(5.14)
=

∫ ν2

ν1

{n · (δr′ − δφ× r′) + m · (δk− δφ× k)} dν . (5.15)

Herein, the integrated kinetic quantities n and m are the resultant contact forces and the
resultant contact couples of the current configuration defined by

n(ν, t) :=

∫
Ā(ν)

t3 d2θ , m(ν, t) :=

∫
Ā(ν)

(ρ× t3) d2θ , (5.16)

with abbreviation of the area element d2θ = dθ1dθ2. Due to the surface integral, the
resultant contact forces and couples are independent of the cross section coordinates θα.
Although not explicitly expressed in the notation, the stress distributions under the sur-
face integral are mapped from the Euclidean cotangent space to the cotangent space of the
beams configuration manifold. Nevertheless, in an induced theory, we still have the con-
nection to the stress distribution of the Euclidean space. In order to make the connection
to an intrinsic theory, it is necessary to introduce an equivalence class of forces. Force
distributions in the Euclidean space which have the same resultant contact forces and
contact couples are considered to be equivalent. The representatives of the equivalence
class are then identified with the internal generalized forces of an intrinsic beam theory
which postulates the right-hand side of (5.15) as its internal virtual work of the general-
ized one-dimensional continuum. By the definition of an equivalence class, we decouple
our induced theory from the theory of a constrained three-dimensional continuous body
and arrive at an intrinsic theory.

Virtual work contributions of inertia forces

For convenience, the mass density is introduced in the bodies reference configuration
as a real valued field ρ0 : X(Q)(B) ⊂ E3 → R which to every point of the body in
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the Euclidean space assigns a local mass per volume. Together with a volume element
dV = dx1 dx2 dx3 we obtain the mass distribution dm = ρ0 dx1 dx2 dx3. The pullback of
the mass distribution to the domain B with respect to the reference configuration leads
to the local description of the mass distribution as

dm = ρ0G
1/2 d3θ , G1/2 = X,1 ·(X,2×X,3 ) .

Considering the virtual work (4.3) and the virtual displacements (5.9) we can transform
the virtual work contributions of the inertia terms. For the manipulation of the inertia
terms we introduce some abbreviations of integral expressions which have their analogous
expressions in rigid body dynamics. The cross section mass density per unit of ν is defined
as

Aρ0(ν) :=

∫
Ā(ν)

ρ0G
1/2 d2θ . (5.17)

When the centerline does not coincide with the line of centroids rc(ν, t), e.g. when the
centerline is determined by the shear centers and the shear centers do not coincide with
the centroids of the cross sections, a coupling term remains, which we introduce as the
integrated quantity

c(ν, t) := Aρ0(rc − r) =

∫
Ā(ν)

ρ ρ0G
1/2 d2θ . (5.18)

The cross section inertia density is introduced as

Iρ0(ν, t) :=

∫
Ā(ν)

ρ̃ρ̃Tρ0G
1/2 d2θ . (5.19)

Furthermore, it is convenient to express the time derivatives of the coupling term by the
angular velocity. Using (5.5) and (5.18), the second time derivative of the coupling term
is expressed by

c̈ = (ω × Aρ0(rc − r))̇ = ω̇ × Aρ0(rc − r) + ω × (ω × Aρ0(rc − r)) . (5.20)

Another quantity which is going to occur, is the product of the cross section inertia density
and the angular velocity

h(ν, t) := Iρ0(ν, t)ω(ν, t) .

In the basis di ⊗ dj the moment of inertia Iρ0 is constant with respect to time t. Using a
coordinate description it can easily be shown that

ḣ = ((Iρ0)ijωjdi)̇ = (Iρ0)ijω̇jdi + (Iρ0)ijωjḋi

= (Iρ0)ijdi ⊗ dj(ω̇kdk + ω × ωkdk) + ω × (Iρ0)ijωjdi

= Iρ0ω̇ + ω × Iρ0ω .

(5.21)

Substitution of the admissible virtual displacements (5.9) and the accelerations (5.7) of
the restricted kinematics into the virtual work expression (4.2) yields:

δW dyn =

∫
B

δx · ẍ dm =

∫
B

{(δr− ρ̃δφ) · (r̈− ρ̃ ω̇ + ω̃ω̃ρ)} ρ0G
1/2 d3θ .
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Similar to the internal virtual work contribution, the integration over B is split in an
integration over the cross section in the body chart Ā(ν) and an integration along ν ∈
(ν1, ν2). Together with the definitions (5.17), (5.18) and (5.19) and the property (B.5) of
the cross product we obtain

δW dyn =

∫ ν2

ν1

{
δr ·

(
Aρ0 r̈ + Aρ0(r̃c − r̃)T ω̇ + ω̃ω̃Aρ0(rc − r)

)
+ δφ · (Aρ0(r̃c − r̃) r̈ + Iρ0 ω̇ + ω̃Iρ0ω)} dν .

Using (5.20) and (5.21) the virtual work contribution of the inertia terms is rewritten in
an even more compact form

δW dyn =

∫ ν2

ν1

{
δr · (Aρ0 r̈ + c̈) + δφ ·

(
q× r̈ + ḣ

)}
dν . (5.22)

As for the internal virtual work expression, we have two possible points of view. Either
we consider the cross section mass density, the coupling term and the cross section inertia
as integrated quantities from a mass distribution of a three-dimensional continuous body
or we identify them as constitutive parameters of an intrinsic theory which relate the
generalized inertia forces from (5.22) with the time derivatives of the generalized position
functions.

Virtual work contributions of external forces

There is a vast amount of possibilities how external forces can be impressed on the beam.
Forces may occur as volume or surface forces and even point forces applied somewhere at
the beam are common in engineering problems. An elegant way to be short in notation is,
if we allow the force contribution df to contain Dirac-type contributions. Since the forces
may also contribute on the boundaries, it is essential that we integrate over the closed set
of the body. Using the same split of the integration as above and the admissible virtual
displacements (5.9), we obtain

δW ext =

∫
B

δx · df
(5.9)
=

∫
[ν1,ν2]

{δr · dn + δφ · dm} ,

where the resultant external force distribution dn and the resultant external couple dis-
tribution dm are the integrated quantities

dn(ν, t) :=

∫
Ā(ν)

df , dm(ν, t) :=

∫
Ā(ν)

ρ× df .

With the same equivalence class argument as for the resultant contact forces and couples,
we can identify the resultant external force and couple distributions with external gener-
alized force distributions of an intrinsic theory. In order to avoid cumbersome derivations,
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we only allow the discontinuities in the force distributions at the boundaries ν1 and ν2.
This leads to the virtual work contribution

δW ext =

∫ ν2

ν1

{δr · n + δφ ·m} dν +
2∑
i=1

{δr · ni + δφ ·mi} |ν=νi . (5.23)

The resultant external forces and couples ni and mi, respectively, are the resultant exter-
nal forces which are impressed at ν1 and ν2. Whereas the unit of n is [N] per unit of ν,
the unit of ni is [N]. For the couples we argue in a similar way.

The boundary value problem

Taking all the transformed contributions of the virtual work for admissible virtual dis-
placements (5.15), (5.22) and (5.23), the principle of virtual work (4.3) with the total
stress (4.7), together with the principle of d’Alembert–Lagrange (4.8) leads directly to
the weak variational formulation of the classical beam

δW =

∫ ν2

ν1

{
n · (δr′ − δφ× r′) + m · (δk− δφ× k) + δr · (Aρ0 r̈ + c̈− n)

+δφ ·
(
c× r̈ + ḣ−m

)}
dν −

2∑
i=1

{δr · ni + δφ ·mi} |ν=νi = 0 ∀δr, δφ, t .
(5.24)

Using the identity (5.11) and integration by parts, the virtual work is expressed as

δW = −{δr · (n + n1) + δφ · (m + m1)} |ν=ν1

+

ν2∫
ν1

{
δr · (Aρ0 r̈ + c̈− n− n′) + δφ ·

(
c× r̈ + ḣ−m−m′ − r′ × n

)}
dν

+ {δr · (n− n2) + δφ · (m−m2)} |ν=ν2 = 0 ∀δr, δφ, t ,

which corresponds to the strong variational formulation of the classical beam. When
the functions in the round brackets are continuous and when the virtual displacements
δr and the virtual rotations δφ are smooth enough, then by the Fundamental Lemma
of Calculus of Variation, the former terms have to vanish pointwise. This leads to the
complete boundary value problem with the equations of motion of the classical beam
which are valid for ν ∈ (ν1, ν2)

n′ + n = Aρ0 r̈ + c̈ ,

m′ + r′ × n + m = c× r̈ + ḣ ,
(5.25)

together with the boundary conditions n(ν1) = −n1, m(ν1) = −m1 and n(ν2) = n2,
m(ν2) = m2. If we allow discontinuities of the force distributions at countable many
points inside the beam, the domain (ν1, ν2) has to be divided into sets where the force
distributions are continuous. The integration by parts can then only be performed on
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the differentiable parts. Consequently, this leads to an equation of motion (5.25) for the
differentiable parts, to boundary conditions at the boundaries and to transition conditions
at the points of the discontinuities.

To summarize, we have seen that the restricted kinematics of the beam allows us
reducing the virtual work of the continuous body in such a way, that the equations of
motion (5.25) correspond to partial differential equations with only one spatial variable.
As mentioned several times, we have two different viewpoints. In an induced theory,
the force contributions in (5.25) are interpreted as resultant forces, i.e. weighted surface
integrals of forces and stresses of the Euclidean space mapped to the cotangent space
of the beams configuration manifold. In an intrinsic theory the forces are considered
as generalized forces which lose their connection to force and stress distributions of the
Euclidean space.

5.3 Nonlinear Timoshenko Beam Theory

Constitutive laws for the resultant contact forces n and the resultant contact couples m
are required to complete the equations of motion (5.25). In an induced theory, it is cus-
tomary to choose a three-dimensional material law with an appropriate three-dimensional
strain measure and integrate the corresponding stress contributions (5.16) over the cross
sections. Here, however, we propose a semi-induced approach for the formulation of con-
stitutive laws in three-dimensional beam theories. Henceforth, we interpret the resultant
contact forces and couples as generalized internal forces and formulate a constitutive law
between generalized strains and generalized internal forces. The generalized strains are
directly determined by the generalized position functions q. When proposing an elastic
constitutive behavior, we have to show, that the variation with respect to the generalized
strain measures leads to the same form of the internal virtual work (5.15) of the induced
theory. This shows the compatibility between an induced and an intrinsic beam formu-
lation. In classical beam theories, the generalized constitutive laws relate the generalized
position functions of the beam, i.e. the motion of the centerline and the rotation of the
cross sections, with the internal generalized forces n and m. As in the three-dimensional
theory, we allow the generalized internal forces to consist of an impressed and of a con-
straint part

n = nI + nC , m = mI + mC . (5.26)

The subscripts (·)I and (·)C stand for impressed forces and constraint forces, respectively.
Whereas the constitutive laws of impressed internal generalized forces are formulated by
single valued force laws, the constitutive law of the constraint internal generalized forces
are given by the principle of d’Alembert–Lagrange (4.8) which can be considered to be a
set-valued force law.

Even though in Timoshenko (1921) and Timoshenko (1922) only the linear and plane
case is treated, we call the beam theory of this section, in which no further constraints
are impressed on the beam, the nonlinear Timoshenko beam theory. Accordingly, the
constraint parts of internal generalized forces vanish, i.e.

nC = 0 , mC = 0 . (5.27)
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There exists a multitude of other names for the same beam theory. Ballard and Millard
(2009) call the beam “poutre naturelle”, Antman (2005) denotes it as “special Cosserat
rod” and as “geometrically exact beam”. With reference to Reissner (1981) and Simo
(1985), it is also called “Simo-Reissner beam”. In our genealogy of beam theories, we
denote a beam with the same constraints by the same name. We distinguish further
between a nonlinear theory, a linearized theory and a plane linearized theory.

The most basic constitutive law for a nonlinear Timoshenko beam is an elastic force law
being expressed by an elastic potential Ŵ (ν, t) for the impressed part of the generalized
internal forces, such that

δW int
I = δ

∫ ν2

ν1

Ŵ (ν, t) dν .

We assume the elastic potential to depend on the generalized strain measures γi and κi

W̃ (ν, t) = W (γi(ν, t), κi(ν, t)) . (5.28)

The generalized strain
γi(ν, t) := di · r′ −Di · r′0 , (5.29)

measures the difference between the deformation of the centerline in the direction di
and the deformation of the reference curve in the direction Di. The effective reference
curvature is defined as k̃0(ν) = R′0R

T
0 = (Di)

′ ⊗ Di. When measuring the difference
between the effective curvature and the effective reference curvature in the direction dk,dj
and Dk,Dj, respectively, we obtain the components k̃kj − (k̃0)kj. Since these components
are skew-symmetric, there is an associated axial vector with the components

κi(ν, t) :=
1

2
εijk(dk · k̃dj −Dk · k̃0Dj) =

1

2
εijk(dk · (dj)′ − Dk · (Dj)

′) . (5.30)

In the following we demonstrate the compatibility of the intrinsic generalized strain mea-
sures with the induced theory, thereby showing that the internal virtual work expression
(5.15) is obtained when varying the elastic potential (5.28), i.e. that

δW int
I =

∫ ν2

ν1

{
∂W

∂γi
δγi +

∂W

∂κi
δκi

}
dν

holds. Using (5.6) and (B.2), the variation of W with respect to γi takes the form

∂W

∂γi
δγi

(5.29)
=

∂W

∂γi
(δr′ · di + r′ · δdi) = nI · (δr′ − δφ× r′) , (5.31)

where we have recognized the resultant contact force nI := nIidi = ∂W
∂γi

di. By expansion

with the orthonormality condition δij = di ·dj and using (5.6), the variation with respect
to κi yields

∂W

∂κi
δκi =

∂W

∂κi
di · δκjdj = mI · (δk− δφ× k) , (5.32)

in which the resultant contact couple as mI := mIidi = ∂W
∂κi

di has been identified. Com-
parison of (5.31) and (5.32) with (5.15) demonstrates the compatibility of the chosen
generalized strain measures and their corresponding elastic potential.
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Let E and G be the Young’s and shear modulus, respectively, and let Aα be the the
area of the cross sections A multiplied by a shear correction factor. Let I1, I2 and J be
the second moments of area and polar moment, respectively. In the following we assume
that the elastic potential takes the quadratic form

W (γi, κi) =
1

2
γi (D̂1)ij γj +

1

2
κi (D̂2)ij κj , (5.33)

with
[D̂1] = Diag[GA1, GA2, EA] , [D̂2] = Diag[EI1, EI2, GJ ] ,

where [D̂1] and [D̂2] contain the collection of the stiffness components (D̂1)ij and (D̂2)ij,
respectively. In the elastic potential (5.33) the directors dα have been chosen such that
they correspond to the principle axes of the cross section surfaces. Consequently, the
constitutive laws for the generalized internal forces are given as

n = nI = nIidi = (D̂1)ijγjdi , m = mI = mIidi = (D̂2)ijκjdi .

which coincide with the impressed part, since the constraint parts (5.27) vanish.

5.4 Nonlinear Euler–Bernoulli Beam Theory

The nonlinear Euler–Bernoulli beam (or Navier–Bernoulli beam) can be regarded as a
Timoshenko beam on which additional constraints have been imposed. The cross sections,
and insofar the directors dα, have to remain orthogonal to the tangent vectors r′ of
the centerline. These constraints are formulated for every instant of time t by the two
constraint functions

gα(ν, t) = dα · r′ = 0 .

It is convenient to let the reference configuration also to satisfy the orthonormality con-
dition. In this case, the constraints coincide with vanishing shear deformation, i.e.

gα = γα = dα · r′ −Dα · r′0 = 0 . (5.34)

The bilateral constraints are guaranteed by the constraint forces nCα. Using (5.6) and
properties of the cross product, the generalized constraint forces nC = nCαdα contribute
to the virtual work of the beam as

δW int
C = δgαnCα = (dα · δr′ + δdα · r′)nCα = nC · (δr′ − δφ× r′) . (5.35)

The generalized constraint forces contribute in the same way as the generalized internal
forces in (5.15). This is in accordance with the decomposition of the internal generalized
forces (5.26) into an impressed and a constraint part. The force law of the generalized
constraint forces, which are considered to be perfect, can only be formulated variationally
by the principle of d’Alembert–Lagrange, which states that (5.35) vanishes for all virtual
displacements which are admissible with respect to (5.34). Such a variational force law
is described by a set-valued force law as depicted in Figure 5.3. The force law at hand
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Figure 5.3: Bilateral constraint as set-valued force law.

may be cast in a normal cone inclusion nCα ∈ N{0}(γα) = R, where the normal cone, cf.
Moreau (1966) or Rockafellar (1970), to the convex set {0} is defined as

N{0}(x) = {y ∈ R | y(x∗ − x) ≤ 0 , x ∈ 0, ∀x∗ ∈ 0} = R .

By setting (x∗− x) = δgα and y = nCα in the normal cone inclusion, we readily recognize
the principle of d’Alembert–Lagrange in inequality form.

For the impressed part, we assume the same quadratic form (5.33) as its elastic poten-
tial. Since the constraint forces do not allow any shear deformation γα, the corresponding
shear stiffness components are immaterial and

[D̂1] = Diag[∗, ∗, EA] , [D̂2] = Diag[EI1, EI2, GJ ] .

The generalized shear forces nIα of the underlying Timoshenko beam theory have become
bilateral generalized constraint forces nCα in the Euler–Bernoulli beam theory. Hence, an
elastic material law of the Euler–Bernoulli beam is given by

n = nI + nC , m = mI ,

where the impressed parts are represented by

nI = nIidi = (D̂1)ijγjdi , mI = mIidi = (D̂2)ijκjdi

and the generalized constraint forces are formulated by the normal cone inclusions

nC = nCαdα , with nCα ∈ N{0}(γα) = R .

Using further concepts of convex analysis, e.g. the indicator function and the concept of
the subdifferential, it is possible to also include the set-valued part in the potential (5.33),
cf. Glocker (2001). This allows an alternative interpretation, that the bilateral generalized
constraint forces nCα are obtained by the limit to infinity of the shear stiffnesses GA1

and GA2.
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5.5 Nonlinear Kirchhoff Beam Theory

The nonlinear Kirchhoff beam (or nonlinear inextensible Navier–Bernoulli beam) is an
Euler–Bernoulli beam with additional inextensibility constraints. Hence, in the Kirchhoff
beam theory the cross sections remain orthogonal to the tangent vectors of the centerline
and the centerline is not allowed to stretch. When also the reference configuration satisfies
these constraints, the set of constraints for every instant of time t is described by three
bilateral constraint functions on the longitudinal and the shear strains

gi(ν, t) = γi = di · r′ −Di · r′0 = 0 .

The contribution of the generalized constraint forces nC = nCidi to the virtual work is
similar to the Euler–Bernoulli beam

δW int
C = δginCi = (di · δr′ + δdi · r′)nCi = nC · (δr′ − δφ× r′) .

For the impressed part, we assume the same quadratic form (5.33) as its elastic potential.
Since the generalized constraint forces do not allow any deformation γi, the corresponding
stiffness components are immaterial and

[D̂1] = Diag[∗, ∗, ∗] , [D̂2] = Diag[EI1, EI2, GJ ] .

Hence, an elastic constitutive law of the nonlinear Kirchhoff beam is given by

n = nC , m = mI ,

where the impressed parts are represented by

mI = mIidi = (D̂2)ijκjdi .

and the generalized constraint forces are formulated by the normal cone inclusions

nC = nCidi , with nCi ∈ N{0}(γi) = R ,

representing the bilateral constraints.
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Classical Linearized Beam Theories

In many engineering applications beams are so stiff, that only small deformations with
respect to a reference configuration occur. Thus, a linear beam theory is preferred which
simplifies the problem drastically. Using the nonlinear beam theory from the previous
chapter, such a linear beam theory is obtained in a straight forward manner by the
linearization around a reference configuration. This chapter presents the process of lin-
earization of a nonlinear theory at the example of classical beam theories, whose results
are best-known, cf. Ballard and Millard (2009).

In Section 6.1 the kinematical quantities of Chapter 5 are linearized around a reference
state. Subsequently, in Section 6.2, the virtual work contributions and its corresponding
differential equations are stated in its linearized form. Finally, Section 6.3 – 6.5 discuss
the elastic constitutive laws of the linearized Timoshenko, Euler–Bernoulli and Kirchhoff
beam theory.

6.1 Linearized Beam Kinematics

In accordance with (5.12), the reference configuration of the classical beam is given by
the placement

Ξ(θα, ν) = X(Q)(θα, ν) = r0(ν) + θαDα(ν) .

For the upcoming linearization it is convenient to rewrite the motion of the beam (5.1)
using its constrained position field in the form

ξ(θα, ν, t) = x(q(·, t))(θα, ν) = r0(ν) + w(ν, t) + θαR(ν, t)Dα(ν) , R = RRT
0 , (6.1)

where the generalized position functions q(·, t) are identified with w(·, t) and R(·, t). The
displacement of the centerline with respect to the reference curve is represented by w.
The rotation R describes the rotation of the cross section from the reference configuration
to the current configuration. Within a linearized theory we assume that

|w′| � 1 , and
∣∣R− 1

∣∣� 1 .
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We parametrize a path through the space of rotations SO(3) by η ∈ R and demand
the identity condition R(0) = 1. A Taylor expansion up to first order terms yields

R(η) = 1 +
dR

dη
(0)η +O

(
η2
)

and define the skew-symmetric matrix θ̃ := dR
dη

(0)η. The skew-symmetry of θ̃ follows

from the orthogonality of R. By taking the derivative of R
T
R = 1 with respect to η and

by evaluating the functions at η = 0 we obtain the skew-symmetry property of θ̃

dR

dη

T

R = −R
T dR

dη
⇒ dR

dη

T

(0) = −dR

dη
(0) .

As it is also shown in Ballard and Millard (2009), from (6.1) it follows directly that the
rotation up to first order terms can be approximated as

R ≈ 1 + θ̃ , |θ| � 1 . (6.2)

As the reference curve r0 is a priori known and does not depend on the motion, the
variation of the centerline r is determined by the variation of the displacement vector only

δr = δr0 + δw = δw .

According to the definition of the virtual rotations (5.6) and (6.2), the linearized virtual
rotations are approximated by the variation of θ̃, i.e.

δφ̃ = δRRT = δR R
T ≈ δθ̃(1 + θ̃)T ≈ δθ̃ .

Assuming also small angular velocities and applying the same linearization argument as
for the virtual rotations, the angular velocities are approximated in a similar way as

ω̃ = Ṙ RT = Ṙ R
T ≈ ˙̃θ(1 + θ̃)T ≈ ˙̃θ .

The approximation of the coupling term (5.20) and the inertia term (5.21) up to first
order of θ and θ̇, are determined by

c̈ ≈ θ̈ × c , ḣ ≈ Iρ0θ̈ .

In order to linearize the generalized strain measure (5.29), we first rewrite the strain
using di = RDi and apply the motion of the beam in the form (6.1). Then, by the ap-
proximation for small rotations (6.2), we obtain the linearized generalized strain measure
γlin
i

γi
(5.29,6.1)

= Di ·
(
(R

T−1)r′0 +R
T
w′
) (6.2)
≈ Di ·(θ̃

T
r′0 +w′) = Di ·(w′−θ×r′0) =: γlin

i . (6.3)



6.2. The BVP of the Classical Linearized Beam Theory 61

For the approximation of the generalized strain measure (5.30), the effective curvature
˜̄k with respect to the rotation R is required. Using the definition of the effective cur-
vature (5.3) and applying the identity (RT

0 )′R0 = −RT
0 R′0, we rewrite the effective

curvature ˜̄k as

˜̄k = R
′
R

T
= (RRT

0 )′R0R
T = R′RT

0 R0R
T −RRT

0 R0
′RT . (6.4)

In order to reformulate the generalized strain measure (5.30), we express the current
directors by the reference directors dk = RDk and simplify the components of the strain
using the orthogonality of the rotation

κ̃kj = Dk · (R0R
TR′RTRRT

0 −R′0R
T
0 )Dj = Dk · (R0R

TR′RT
0 −R′0R

T
0 )Dj .

Using a telescopic expansion by identities, we are able to express the components of the
curvature with the rotations R only. The linearization up to first order terms is then
easily obtained by applying (6.2)

κ̃kj = Dk ·
(
R0R

TR′RT
0 (R0R

T)(RRT
0 )− (R0R

T)(RRT
0 )R′0(RTR)RT

0

)
Dj

(6.4,6.1)
= Dk ·

(
R

T
(R
′
R

T
)R
)
Dj

(6.2)
≈ Dk · θ̃

′
Dj .

The components of the associated axial vector are obtained using the alternating symbols,
i.e.

κi(ν, t) =
1

2
εijkκ̃kj ≈

1

2
εijkDk · θ̃

′
Dj = Di · θ′ =: κlin

i .

The second generalized linearized strain κlin
i measures the change of orientation θ′ in

direction of the reference directors Di.

6.2 The Boundary Value Problem of the Classical

Linearized Beam Theory

After the linearization of the kinematic expressions, the virtual work of the linearized beam
is obtained in a straight forward manner from (5.24) by replacing the nonlinear kinematic
expressions by their linearized ones. As in the nonlinear case, this leads directly to the
weak variational formulation of the linearized classical beam

δW =

∫ ν2

ν1

{
n · [δw′ − δθ × r′0] + m · δθ′ + δw ·

(
Aρ0ẅ + θ̈ × c− n

)
(6.5)

+δθ ·
(
c× ẅ + Iρ0θ̈ −m

)}
dν −

2∑
i=1

{δw · ni + δθ ·mi} |ν=νi = 0 ∀δw, δθ, t .

After integration by parts, the virtual work takes the form

δW = −{δw · (n + n1) + δθ · (m + m1)} |ν=ν1

+

ν2∫
ν1

{
δw · (Aρẅ + θ̈ × c− n− n′) + δθ · (c× ẅ + Iρ0θ̈ −m−m′ − r′0 × n)

}
dν

+ {δw · (n− n2) + δθ · (m−m2)}ν=ν2
= 0 ∀δw, δθ, t ,
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which corresponds to the strong variational formulation of the linearized classical beam.
Using the same smoothness arguments as in the nonlinear setting, the Fundamental
Lemma of Calculus of Variation leads to the complete boundary value problem of the
linearized classical beam. The boundary value problem consists of the equations of mo-
tion for the interior of the beam ν ∈ (ν1, ν2)

n′ + n = Aρ0ẅ + θ̈ × c ,

m′ + r′0 × n + m = c× ẅ + Iρ0θ̈ ,
(6.6)

and of the boundary conditions n(ν1) = −n1, m(ν1) = −m1 and n(ν2) = n2, m(ν2) = m2.
The force contributions in (6.6) can be considered either as resultant force contributions
with a relation to the Euclidean space or as generalized forces of a generalized one-
dimensional continuum.

Let the generalized external forces n and m be potential forces only. Then, for static
problems, it is possible to solve the equilibrium equations (6.6) for n and m with gener-
alized force boundary conditions only. When we are interested in the displacement of the
beam, a constitutive law for the generalized internal forces completes the description of
the beam.

6.3 Linearized Timoshenko Beam Theory

As in the geometrically nonlinear case, we propose a semi-induced theory and look for
the same form of the elastic potential

Ŵ (ν, t) = W (γlin
i (ν, t), κlin

i (ν, t))

as in (5.28) but exchange the nonlinear generalized strain measures by their linearizations.
Also in the linearized setting, we have to show the compatibility of the chosen linearized
generalized strain measures with the linearized induced theory. Defining nI = nIiDi :=
∂W
∂γlini

Di, the variation

∂W

∂γlin
i

δγlin
i

(6.3)
=

∂W

∂γlin
i

Di · (δw′ − δθ × r′0) = nI · (δw′ − δθ × r′0) ,

shows the compatibility with the virtual work contribution (6.5). Defining mI = mIiDi :=
∂W
∂κlini

Di, the variation

∂W

∂κlin
i

δκlin
i =

∂W

∂κlin
i

Di · δθ′ = mI · δθ′ ,

shows also the compatibility with the virtual work contribution (6.5). For the elastic
potential, we assume the same quadratic form (5.33) as in the nonlinear case, but replace
the generalized strains by their corresponding linearizations

W (γlin
i , κ

lin
i ) =

1

2
γlin
i (D̂1)ij γ

lin
j +

1

2
κlin
i (D̂2)ij κ

lin
j , (6.7)
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with the stiffness components

[D̂1] = Diag[GA1, GA2, EA] , [D̂2] = Diag[EI1, EI2, GJ ] .

Consequently, the constitutive laws for the generalized internal forces are

n = nI = nIiDi = (D̂1)ijγ
lin
j Di , m = mI = mIiDi = (D̂2)ijκ

lin
j Di .

As in the nonlinear case, the linearized Timoshenko beam is described by impressed gen-
eralized internal forces only.

6.4 Linearized Euler–Bernoulli Beam Theory

The linearized Euler–Bernoulli beam is a linearized Timoshenko beam with the additional
linearized constraints, that the cross sections remain orthogonal to the tangent vector of
the centerline. The linearized version of the orthogonality constraints results in a beam,
which does not allow any linearized shear deformation. Thus, for any time t, a linearized
Euler–Bernoulli beam has to satisfy the following constraint functions

gα(ν, t) = γlin
α = Dα · (w′ − θ × r′0) = 0 .

The contribution of the generalized constraint forces nC = nCαDα to the virtual work is
similar to the nonlinear case, i.e.

δW int
C = δgαnCα = Dα · (δw′ − δθ × r′0)nCα = nC · (δw′ − δθ × r′0) . (6.8)

For the impressed part, we assume the same quadratic form (6.7) as its elastic potential.
Since the generalized constraint forces do not allow any deformation γα, the corresponding
stiffness components are immaterial and

[D̂1] = Diag[∗, ∗, EA] , [D̂2] = Diag[EI1, EI2, GJ ] .

The elastic material law of the linearized Euler–Bernoulli beam is summarized as follows:

n = nI + nC , m = mI ,

where the impressed parts are represented by the single-valued force law

nI = nIiDi = (D̂1)ijγ
lin
j Di , mI = mIiDi = (D̂2)ijκ

lin
j Di .

and the generalized constraint forces are formulated by the normal cone inclusions

nC = nCαDα , with nCα ∈ N{0}(γlin
α ) = R ,

representing the bilateral constraints.
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6.5 Linearized Kirchhoff Beam Theory

The linearized Kirchhoff beam is a linearized Euler–Bernoulli beam which additionally re-
stricts the elongation of the centerline. The constraint functions are completely described
by the linearized generalized strain measure γlin

i , i.e.

gi(ν, t) = γlin
i = Di · (w′ − θ × r′0) = 0 .

The contribution of the generalized constraint forces nC = nCiDi is obtained in the sense
of (6.8). For the impressed part, we assume the same quadratic form (6.7) as the elastic
potential. Since the generalized constraint forces do not allow any deformation γlin

i , the
corresponding stiffness components are immaterial and

[D̂1] = Diag[∗, ∗, ∗] , [D̂2] = Diag[EI1, EI2, GJ ] .

The elastic material law of the linearized Kirchhoff beam is summarized as follows:

n = nC , m = mI ,

where the impressed parts of the internal generalized forces are represented by

mI = mIiDi = (D̂2)ijκ
lin
j Di

and the force laws for the generalized constraint forces are formulated by the normal cone
inclusions

nC = nCiDi , with nCi ∈ N{0}(γlin
i ) = R ,

representing the bilateral constraints.
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Classical Plane Linearized Beam Theories

We speak of a classical plane linearized beam as being a classical linearized beam fulfilling
the following assumptions. The cross section geometry remains the same for all cross
sections, the motion is restricted to a plane, the reference configuration is straight and
the material of the continuous body is described by a linear elastic material law. These
assumptions on the motion of the beam and material law enable us to formulate statements
which are not easily accessible for a more general configuration of a beam. One key point is
that we are able to arrive at a fully induced beam theory where the integration of the stress
distributions over the cross sections can be performed analytically. Hence, we recognize
relations between the generalized internal forces and the three-dimensional stress field of
the Euclidean space. This allows to apply concepts of the theory of strength of materials
to beams which is of vital importance to solve engineering problems. In order to achieve
such a connection, we restate the generalized internal forces for the plane linearized beam.
The restriction to small displacements allows us to start from the internal virtual work
formulated with the linearized strain. Afterwards, we proceed in a similar way as in
the previous chapters. We state the constrained position field of the beam and apply it
to the virtual work which leads us consequently to the boundary value problem of the
beam. Using the solutions of the boundary value problem and non-admissible virtual
displacements, it is possible to access in a further step the constraint stresses of the beam
which guarantee the restricted kinematics of the beam.

The outline of the chapter is as follows. In Section 7.1 we repeat the principle of
d’Alembert–Lagrange for linear elasticity and introduce an elastic constitutive law for
the impressed stresses. In Section 7.2 – 7.4 the equations of motion and the plane stress
distribution of the plane linearized Timoshenko, Euler–Bernoulli and Kirchhoff beam are
determined.

7.1 Constrained Position Fields in Linear Elasticity

In the theory of linear elasticity, we linearize the configuration of the continuous body
around a reference configuration Ξ(θk) and describe the motion ξ(θk, t) of the body with
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the vector valued displacement displacement field

u(θk, t) := ξ(θk, t)−Ξ(θk) . (7.1)

The deformation of the body is measured by the linearized strain measure which is defined
as

ε(u) =
1

2

(
(∇u)T +∇u

)
,

where ∇ represents the gradient of the Euclidean space. Using the symmetry property
of the Cauchy stress, the internal virtual work (4.1) can be written, for a linearized
kinematics, with the variation of the displacement field δu as its virtual displacement
field

δW int =

∫
B

σ : ε(δu) dV . (7.2)

We assume the parametrization of the body to be given by the reference configuration of
the continuous body in the Euclidean space, i.e. B ⊂ E3. For convenience, we restrict us
to cartesian coordinates (x, y, z) which parametrize the set B. Hence, the volume element
is given by dV = dx dy dz and the gradient reduces to a partial derivative with respect
to (x, y, z).

As discussed in Section 4.2, a continuous body which is enforced to follow a constrained
position field is exposed to the stress field

σ = σI + σC , (7.3)

which is composed by an impressed part σI and a constraint part σC of perfect constraint
stresses. For admissible virtual displacements and, consequently, for the strain due to
virtual displacements being admissible, the virtual work due to the perfect constraint
stresses

δW int
C =

∫
B

σC : ε(δu)dV = 0 ∀δu ∈ TξC ,

vanishes identically.
For the impressed part of the stress, we apply a slightly modified isotropic linear elastic

material law described by the Young’s modulus E and the shear modulus G. We consider
the beam’s motion in the eIx-e

I
z plane. Stresses in eIy-direction are constituted by the

constraint stresses. Since we assume the cross sections to be rigid, lateral contraction is not
possible. To avoid constraint stresses due to the material law in the cross sections, we set
the Poisson’s ratio for the normal forces σIii, i = {1, 2, 3} to zero. The shear deformations
are not influenced by the kinematical restrictions of the beam and are treated insofar in
the same way as for an unconstrained continuous body. Finally, we arrive at the following
linear elastic material law for the impressed part of the stress field

σIii = Eεii ,
σIij = 2Gεij , i 6= j

}
i, j = {1, 2, 3} . (7.4)
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Figure 7.1: Plane linearized Timoshenko beam.

7.2 The Plane Linearized Timoshenko Beam

In the following, we investigate the plane beam theories at the example of a clamped
beam, as depicted in Figure 7.1, with length l, constant cross section area A, Young’s
modulus E, shear modulus G, cross section mass density Aρ0 and cross section inertia
density Iρ0 . The inertia terms arise from a homogenous mass distribution and from the
definitions (5.17) and (5.19). The centerline coincides with the line of centroids which in its
reference configuration corresponds to the eIx-axis. The beam is loaded by applied normal
forces n(x) in eIx-direction and by applied shear forces q(x) in eIz-direction whose force
distributions in the Euclidean space are both homogenously distributed over the cross
section. At x = l, additional forces nl and ql, which are also homogenously distributed
over the cross section, are applied.

Kinematics, virtual work and the boundary value problem

Since in a linear theory the motion of the beam is described by the displacement field (7.1),
we assume the embedding (4.10) to induce a constrained displacement field. The motion of
the Timoshenko beam is described by the motion of the centerline and the rotation of the
cross sections. In the plane, but kinematically nonlinear case, the nonlinear displacement
field unl is constrained to

unl((x, y, z), t) = xnl(q(·, t))(x, y, z) =

 u(x, t)− sin (α(x, t))z
0

w(x, t) + (1− cos (α(x, t)))

 ,

where the generalized position functions q(·, t) are identified with u(·, t), w(·, t) and α(·, t).
The longitudinal displacement is described by u(·, t), the transverse displacement by w(·, t)
and the rotation of the cross section by α(·, t). Due to the clamping, the displacement at
x = 0 has to vanish, i.e. unl((0, y, z), t) = 0. A linearization around the straight reference
configuration yields the constrained linearized displacement field

u((x, y, z), t) =

u1(x, y, z, t)
u2(x, y, z, t)
u3(x, y, z, t)

 = x(q(·, t))(x, y, z) =

u(x, t)− α(x, t)z
0

w(x, t)

 , (7.5)
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with the clamping condition u((0, y, z), t) = 0. A plane linearized Timoshenko beam is a
continuous body whose motion is restricted to the displacement field (7.5). The strain of
the continuous body

ε(u) =

∂u1

∂x
1
2
(∂u

1

∂y
+ ∂u2

∂x
) 1

2
(∂u

1

∂z
+ ∂u3

∂x
)

∂u2

∂y
1
2
(∂u

2

∂z
+ ∂u3

∂y
)

sym. ∂u3

∂z

 =

u′ − α′z 0 1
2
(w′ − α)

0 0
sym. 0


is consequently constrained too such that it can be formulated in terms of u,w and α
only. The admissible virtual displacements δx and the corresponding strain ε(δx) with
respect to the constraint displacements (7.5) are

δx =

δu− δαz0
δw

 , ε(δx) =

δu′ − δα′z 0 1
2
(δw′ − δα)

0 0
sym. 0

 . (7.6)

Since the clamping is guaranteed, δx((0, y, z), t) = 0. The material law of the impressed
stress field (7.4) applied to the constrained displacement field is given by

σIxx = Eεxx = E(u′ − α′z) ,

σIxz = 2Gεxz = G(w′ − α) .
(7.7)

In order to eliminate the constraint stresses due to the kinematical restrictions, we evaluate
the virtual work for the admissible virtual displacements (7.6). With the usual split of
the integration, we write the internal virtual work of (7.2) for the strains of the admissible
virtual displacements (7.6) as

δW int =

∫
B

{(δu′ − δα′z)σIxx + (δw′ − δα′)σIxz} dV

=

∫ l

0

{
δu′
∫
A

σIxxdA− δα′
∫
A

zσIxxdA+ (δw′ − δα)

∫
A

σIxzdA

}
dx

=

∫ l

0

{δu′NI − δα′MI + (δw′ − δα)QI} dx .

(7.8)

Herein, the resultant contact forces of the plane linearized Timoshenko beam have been
recognized as the integrated quantities

NI(x, t) :=

∫
A

σIxxdA , QI(x, t) :=

∫
A

σIxzdA , MI(x, t) :=

∫
A

zσIxxdA , (7.9)

which we also denote as the resultant contact normal forces, resultant contact shear forces
and the resultant contact couples. Using the linear elastic material law for the constrained
displacement field (7.7), the internal virtual work is reformulated further to

δW int =

∫ l

0

{
δu′E

∫
A

dAu′ − δα′
(
−E

∫
A

z2dAα′
)

+ (δw′ − δα)G

∫
A

dA(w′ − α)

}
dx

=

∫ l

0

{δu′EAu′ − δα′(−EIα′) + (δw′ − δα)GA(w′ − α)} dx (7.10)
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in which the second moment of area is abbreviated by I :=
∫
A
z2 dA. Since the centerline

corresponds to the line of centroids, the integral
∫
A
z dA = 0 vanishes and the couple

terms between u′ and α′ vanish in the second line of (7.10) . By comparing (7.8) and
(7.10), we obtain a constitutive law for the generalized internal forces

NI = EAu′ , MI = −EIα′ , QI = GA(w′ − α) . (7.11)

The connection between the generalized internal forces and the impressed stress field of
the continuous body

σIxx = E(u′ − α′z) =
NI

A
+
MI

I
z ,

σIxz = G(w′ − α) =
QI

A
,

(7.12)

is established by (7.7) and (7.11). Applying the plane kinematics to (6.5) and using
the results of (7.8), we obtain the weak variational formulation of the plane linearized
Timoshenko beam as

δW =

∫ l

0

{δu′NI + (δw′ − δα)QI − δα′MI + δu(Aρü− n) + δw(Aρẅ − q)

−δα(−Iρα̈)} dx− {δunl + δwql} |x=l = 0 , ∀δu, δw, δα, t ,
(7.13)

with δu(0) = δw(0) = δα(0) = 0 in order to satisfy the clamping boundary condition.
Using integration by parts, we obtain the strong variational formulation

δW =

∫ l

0

{δu(Aρü− n−N ′I) + δw(Aρẅ − q −Q′I)− δα(−Iρα̈−M ′
I +QI)} dx

− (δu(nl −NI) + δw(ql −QI)− δα(−MI))|x=l = 0 ,∀δu, δw, δα, t (7.14)

of the plane linearized Timoshenko beam. Using the common arguments of calculus of
variations, the terms in the round brackets of (7.14) have to vanish pointwise. This leads
for the interior of the beam x ∈ (0, l) to the equations of motion

Aρü = N ′I + n ,

Aρẅ = Q′I + q ,

−Iρα̈ = M ′
I −QI ,

(7.15)

to the kinetic boundary conditions NI(l) = nl, QI(l) = ql and MI(l) = 0 and to the kine-
matic boundary conditions u(0) = w(0) = α(0) = 0. In the equations of motion (7.15),
we recognize that the longitudinal deformations are completely decoupled from the shear
and bending deformations of the beam. With the constitutive laws of (7.11) the equations
of motion of the Timoshenko beam take the form

ρAü = EAu′′ + n ,

ρAẅ = GA(w′′ − α′) + q ,

ρIα̈ = EIα′′ +GA(w′ − α) .

(7.16)
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It is possible to modify the second and the third equations of (7.16), such that the rotation
angle α can be eliminated. Firstly, we take the derivative of the third equation with respect
to x. Secondly, we solve the second equation for α′. Lastly, we insert α′ and its further
derivatives with respect to time and position into the differentiated third equation. This
leads us to a forth order differential equation in the transverse displacements w

ρAü− EAu′′ = n

EIw′′′′ + ρAẅ − Iρ
(
E

G
+ 1

)
ẅ′′ +

Iρ2

G

....
w = q +

ρI

GA
q̈ − EI

GA
q′′ .

(7.17)

For vanishing distributed shear forces q and a shear correction factor of 1, the second
equation of (7.17) coincide with Eq. (7) of the celebrated publication of Timoshenko
(1921).

Constraint stresses of the plane Timoshenko beam

In the previous subsection, (7.12) connects the generalized internal forces to the impressed
stress distribution of the continuous body. Unfortunately, we do not access the total stress
distribution of the beam, since the constraint stresses σC are eliminated by the principle
of d’Alembert–Lagrange. Insofar, the constant shear stress σIxz is not in contradiction
with a stress free boundary at the lateral surface of the beam. The constraint stress σCxz
is guaranteeing a stress free surface. To make the constraint stresses visible, we have
to evaluate the virtual work of the beam for non-admissible virtual displacements. Since
the non-admissible virtual displacements do not respect the kinematical restrictions (7.5),
the constraint stresses will appear in the virtual work expression. With the solution of
the boundary value problem, we can determine the appearing constraint stresses up to a
certain indeterminacy.

In the following, we are going to use two special functions, which are very convenient
to extract the desired constraint stresses. We require the unit step function

h(x) : R→ {0, 1} , x 7→
{

0: x < 0
1: x ≥ 0

(7.18)

and its derivative, the Delta-Dirac distribution δ. The Delta-Dirac distribution is loosely
defined for a real valued function f(x) as

δ(x0) :

∫
R
δ(x0)f(x)dx = f(x0) . (7.19)

In accordance with the first equation of motion of (7.15), we rewrite the resultant contact
normal force at x = l as

NI(l) = NI(x0) +

∫ l

x0

N ′Idx = NI(x0) +

∫ l

x0

(ρAü− n)dx . (7.20)

In order to evaluate the constraint stress distribution σCxx(x0) we cut the beam, as de-
picted in Figure 7.2, at the position x = x0 appart and virtually displace the right part of
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Figure 7.2: Non-admissible virtual displacements for the extraction of the constraint
stresses σCxx.

the beam by the constant value δa ∈ R. Technically, the non-admissible virtual displace-
ments and their corresponding strains are written as

δxna =

δa h(x− x0)
0
0

 , ε(δxna) =

δa δ(x0) 0 0
0 0

sym. 0

 , (7.21)

where we have applied the unit step function (7.18) and the Delta-Dirac distribution
(7.19). Using the internal virtual work (7.2) and the virtual work contribution of the
external and inertia forces from (7.14), we obtain the virtual work for the non-admissible
virtual displacements (7.21) as

δW =

∫ l

0

∫
A

δa δ(x0)(σIxx + σCxx)dAdx+

∫ l

x0

δa(ρAü− n)dx− δanl .

Using the property of the Delta-Dirac distribution together with (7.12), we rewrite the
virtual work into the form

δW = δa

(∫
A

{
NI

A
(x0) +

MI

I
(x0)z + σCxx(x0)

}
dA+

∫ l

x0

{ρAü− n} dx− nl
)
.

Since the centerline corresponds to the line of centroids, the term with the resultant
contact couple MI vanishes after integration over the cross section. The principle of
virtual work states that

δW = δa

∫
A

σCxx(x0)dA+ δa

(
NI(x0) +

∫ l

x0

{ρAü− n} dx− nl
)

= 0 ∀δa .

Using the equivalence (7.20) and the boundary condition at the end of the beam, the
round bracket in the above equation vanishes. Hence, the normal constraint stresses in
eIx-direction integrated over the cross section have to vanish∫

A

σCxx(x0)dA = 0 . (7.22)



72 Chapter 7. Classical Plane Linearized Beam Theories

Figure 7.3: Non-admissible virtual displacements to evaluate constraint shear stresses σCxz

Here we already recognize the first indeterminacy of the constraint stresses. It is not
possible to determine the constraint stresses σCxx uniquely. In order to obtain in the
further derivations the classical results for the constraint transverse shear stresses, we
choose the normal constraint stresses to vanish, i.e. σCxx = 0.

We extract the constraint transverse shear stress in the cross section σxz(z0) at z = z0,
by shearing the beam with the non-admissible virtual displacements and its corresponding
virtual strains

δxna =

δa(x)h(z − z0)
0
0

 , ε(δxna) =

δa′h(z − z0) 0 1
2
δa δ(z0)

0 0
sym. 0

 , (7.23)

where the smooth function δa(x) vanishes at the boundary δa(0) = δa(l) = 0. It is
convenient to introduce the following integrated quantities

Az0 :=

∫
A

h(z − z0)dA , Hz0 :=

∫
A

zh(z − z0)dA , (7.24)

where we call Hz0 first moment of area. Using the internal virtual work (7.2) and the
virtual work contribution of the external and inertia forces from (7.14), we obtain the
virtual work for the non-admissible virtual displacements (7.23) as

δW =

∫ l

0

∫
A

{
δa′h(z − z0)σIxx + δa δ(z0)σxz + δa

(
ρü− n

A

)
h(z − z0)

}
dAdx .

In accordance with (7.12) and the abbreviations of (7.24), we integrate the virtual work
over the cross section. As depicted in Figure 7.3 the size of the beam at z0 in eIy-direction
is given by b(z0). Assuming that the transverse shear stresses σxz are constant in ey-
direction, we reformulate the virtual work to

δW =

∫ l

0

{
δa′

MI

I
Hz0 + δa′

NI

A
Az0 + δa b(z0)σxz(z0) + δa

(
ρü− n

A

)
Az0

}
dx .

Using integration by parts and the connection between the resultant contact shear forces
and the shear stresses of (7.12), we obtain the expression

δW =

∫ l

0

δa

{
−M ′

I

I
Hz0 + b(z0)

(
QI

A
+ σCxz(z0)

)
+ (Aρü− n−N ′I)

Az0
A

}
dx .
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By the first equation of (7.15) the last term in the round brackets have to vanish and we
state the principle of virtual work for the non-admissible virtual displacements (7.23) as
follows:

δW =

∫ l

0

δa

{
−M ′

I

I
Hz0 + b(z0)

(
QI

A
+ σCxz(z0)

)}
dx = 0 ∀δa .

Using the common arguments of calculus of variations, the integrand has to vanish point-
wise, which leads to the constraint transverse shear stress distribution

σCxz(z0) =
M ′

IHz0

Ib(z0)
− QI

A
, (7.25)

where M ′
I is given by the last equation of (7.15). The first term is equivalent to the

transverse shear stress due to bending. We will discuss this case within the Euler–Bernoulli
theory, where this result is commonly known.

Figure 7.4: Non-admissible virtual displacements for constraint normal stresses σzz

The normal constraint stresses σCzz in the rigid cross sections is the last contribution of
constraint stresses which we evaluate. These normal constraint stresses only appear in the
dynamical consideration of the problem or when distributed shear forces q are imposed. In
order to make statements about the constraint stress distribution we have to assume, that
the shear forces q arise from a homogenous force distribution over the cross section. For
the extraction of the constraint stresses, we assume the following non-admissible virtual
displacements, as depicted in Figure 7.4, and its corresponding strain

δxna =

 0
0

δa(x)h(z − z0)

 , ε(δxna) =

0 0 1
2
δa′h(z − z0)

0 0
sym. δaδ(z0)

 , (7.26)

where the smooth function δa(x) vanishes at the boundary δa(0) = δa(l) = 0. Using the
internal virtual work (7.2) and the virtual work contribution of the external and inertia
forces from (7.14), we obtain the virtual work for the non-admissible virtual displacements
(7.26) as

δW =

∫ l

0

{∫
A

δa′h(z − z0)σxzdA+ δa b(z0)σCzz(z0) + δa(ρAẅ − q)Az0
A

}
dx .
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In accordance with (7.12), (7.25) and integration by parts, we transform the virtual work
further to

δW =

∫ l

0

δa

{
−M ′′

I

Ib(z0)

∫
A

h(z − z0)Hz0dA+ b(z0)σCzz(z0) + (ρAẅ − q)Az0
Az

}
dx = 0 ∀δa .

The standard arguments lead to the constraint stress

σCzz =
M ′′

I

Ib(z0)2

∫
A

h(z − z0)Hz0dA−
Az0
A

(ρAẅ − q) . (7.27)

Using (7.3), (7.12), (7.22), (7.25) and (7.27) the total stress field of the plane linearized
Timoshenko beam is given by

σxx =
NI

A
+
MI

I
z ,

σxz =
M ′

IHz0

Ib
,

σzz =
M ′′

I

Ib(z0)2

∫
A

h(z − z0)Hz0dA−
Az0
A

(ρAẅ − q) .

(7.28)

Due to the constraint shear stress the boundary conditions at the lateral surface is fulfilled.
When calculating the stress distribution for a clamped cantilever beam with rectangular
cross section of height h under a constant shear force distribution q, the static solution
implies with respect to z, that σxx(z) is a linear function, σxz(z) is quadratic and σzz(z)

is cubic. The solutions are of the magnitude σxx ∼ h
l
, σxz ∼

(
h
l

)2
and σzz ∼

(
h
l

)3
. The

magnitudes of the stress distributions justify for slender bodies to neglect the normal
stress contribution in eIz-direction. When working with composite structures also the
shear stresses become more relevant. Hence, terms up to second order are considered in
engineering for the criterions of failure.

7.3 The Plane Linearized Euler–Bernoulli Beam

The Euler–Bernoulli beam assumption is that the cross sections remain orthogonal to
the tangent vector of the centerline. In the plane case, the condition is fulfilled when
the derivative of the lateral displacement w is related to the cross section rotation α by
w′ = tanα. For small rotations the constraint condition is written as

g = α− w′ = 0 . (7.29)

In contrast to the three-dimensional Euler–Bernoulli beam theories, the plane theory
allows to fulfill the additional Euler–Bernoulli constraint directly by a constrained position
field of the continuous body and the constraint do not have to be guaranteed afterwards
by a set-valued force law on the generalized internal forces. The constraint (7.29) leads
to some specialty in the Euler–Bernoulli beam formulation. The embedding (4.10) does
not only depend on the position functions q but also on their derivatives q′ with respect
to ν.
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Kinematics, virtual work and the boundary value problem

In accordance with (7.29) and (7.5), the constrained displacement field of the Euler–
Bernoulli beam is

u((x, y, z), t) = x(q(·, t),q′(·, t))(x, y, z) =

u(x, t)− w′(x, t)z
0

w(x, t)

 , (7.30)

with the clamping condition u((0, y, z), t) = 0. We recognize the generalized position
functions q with the longitudinal and transverse displacements u and w, respectively.
The strain of the continuous body

ε(u) =

u′ − w′′z 0 0
0 0

sym. 0


is due to the restricted kinematics formulated in terms of u and w only. Hence, the
Euler–Bernoulli assumption leads to a beam with constrained shear deformation. The
admissible virtual displacements δx and its corresponding strain ε(δx) with respect to
the constrained displacements (7.30) are

δx =

δu− δw′z0
δw

 , ε(δx) =

δu′ − δw′′z 0 0
0 0

sym. 0

 . (7.31)

Since the clamping is guaranteed, δx((0, y, z), t) = 0. The internal virtual work of (7.2)
for the admissible virtual strains (7.31) is written using the common split of integration
as

δW int =

∫ l

0

{
δu′
∫
A

σIxxdA− δw′′
∫
A

zσIxxdA

}
dx =

∫ l

0

{δu′NI − δw′′MI} dx , (7.32)

where the internal generalized forces are defined as in (7.9). Using the same procedure as
in (7.10), the constitutive laws for the generalized internal forces are obtained as

NI = EAu′ , MI = −EIw′′ . (7.33)

Since we treat the Euler–Bernoulli beam in the sense of an induced theory, we can for-
mulate the connection between the generalized internal forces and the impressed stress
distribution of the continuous body as

σIxx = E(u′ − w′′z) =
NI

A
+
MI

I
z ,

σIxz = 0 .
(7.34)

Applying the plane kinematics to (6.5) and using the results of (7.32) , we obtain the
weak variational formulation of the plane linearized Euler–Bernoulli beam as

δW =

∫ l

0

{δu′NI − δw′′MI + δu(Aρü− n) + δw(Aρẅ − q)

− δw′(−Iρẅ′)} dx− (δunl + δwql)|x=l = 0 , ∀δu, δw, t ,
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where δu(0) = δw(0) = δw′(0) = 0 in order to satisfy the clamping boundary condition.
The strong variational form is obtained by applying integration by parts, once for the δu′-
and δw′-terms and twice for the δw′′-terms

δW =

∫ l

0

{δu(Aρü− n−N ′I) + δw(Aρẅ − q −M ′′
I − Iρẅ′′)} dx

− (δu(nl −NI) + δw(ql −M ′
I)− δw′(−MI))|x=l = 0 , ∀δu, δw, t .

Using the common arguments, we obtain the equations of motion of the plane linearized
Euler–Bernoulli beam

Aρü = N ′I + n ,

Aρẅ − Iρẅ′′ = M ′′
I + q ,

(7.35)

together with the kinetic boundary conditions at x = l, nl = ND(l), ql = M ′
D(l) and

MI(l) = 0 and the kinematic boundary conditions u(0) = w(0) = w′(0) = 0. Using the
constitutive laws (7.33), the dynamic equations of motion for the Euler–Bernoulli beam
take the form

Aρü− EAu′′ = n ,

EIw′′′′ + Aρẅ − Iρẅ′′ = q .
(7.36)

Constraint stresses of the plane Euler–Bernoulli beam

In the equations of motion of the Euler–Bernoulli beam (7.35) we recognize, that no
traction force QI appears. Nevertheless, it is possible that traction forces q are equili-
brated. The equilibrium is guaranteed by the constraint stresses and their corresponding
internal generalized constraint forces, which in (7.35) drop out, due to the projection on
admissible virtual displacements. In order to access these constraint stresses, we intro-
duce non-admissible virtual displacements as done in the previous section. The virtual
displacements (7.6), which are admissible for the Timoshenko beam, are non-admissible
virtual displacements for the Euler–Bernoulli beam, i.e.

δxna =

δu− δαz0
δw

 , ε(δxna) =

δu′ − δα′z 0 1
2
(δw′ − δα)

0 0
sym. 0

 . (7.37)

Since the clamping is still guaranteed, δxna((0, y, z), t) = 0. As for the Timoshenko beam,
we choose the normal constraint stresses to vanish, i.e. σCxx = 0. Using the vanishing
impressed transverse shear stresses (7.34), we rewrite the internal virtual work of the plane
linearized Euler–Bernoulli beam according to non-admissible virtual displacements (7.37)
as

δW int =

∫ l

0

{
δu′
∫
A

σIxxdA− δα′
∫
A

zσIxxdA+ (δw′ − δα)

∫
A

σCxzdA

}
dx

=

∫ l

0

{δu′NI − δα′MI + (δw′ − δα)QC} dx ,
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in which we define the resultant contact shear force as

QC(x) :=

∫
A

σCxz dA .

By substituting QI with QC and α with w′ in (7.13) and (7.14), this leads to the non-
minimal equations of motion

Aρü = N ′I + n ,

Aρẅ = Q′C + q ,

−Iρẅ′ = M ′
I −QC .

These are exactly the equations of motion which are obtained, when starting with the
balance of linear and angular momentum, cf. for the static case Gross et al. (2011). From
such a derivation it does not become clear, that within the Euler–Bernoulli beam theory
the resultant contact shear forces QC(x) are in fact constraint forces. The derivation of
the constraint stresses is identical to the Timoshenko beam, hence it holds that

σCxx = 0 , σCxz =
M ′

IHz0

Ib
, σCzz =

M ′′
I

Ib2

∫
A

h(z − z0)Hz0dA−
Az0
A

(ρAẅ − q) .

The total stress distribution coincides therefore with the stress distribution of the Timo-
shenko beam (7.28). For the static case of the clamped beam under end load ql = P , the
transverse shear stress at z0 is obtained by

σxz(z0) =
PHz0

Ib(z0)
.

This is the transverse shear stress formula which is derived in all technical mechanics
books and is commonly used for criterions of failure. However, it is seldom mentioned,
that also constraint stresses, which cannot be determined uniquely, are considered for
criteria of failure.

7.4 The Plane Linearized Kirchhoff Beam

The Kirchhoff beam has an additional inextensibility constraint

g = u′ = 0 ,

i.e. that the derivative of longitudinal displacement has to vanish. Since the dynamics in
eIx-direction is eliminated, the equations of motion of the Kirchhoff beam coincide with
the second line of (7.35) and (7.36). The derivation of the equations of motion works
analogously to the Euler–Bernoulli beam and is therefore omitted here. The constitutive
equations for the generalized internal forces is given as

MI = −EIw′′ .
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The relationship between the three-dimensional theory and the internal generalized forces
is obtained as

σIxx = E(−w′′z) =
MI

I
z , σIxz = 0 , σIzz = 0 .

With the same non-admissible virtual displacements as for the Euler–Bernoulli beam
and the definition of NC :=

∫
A
σCxx dA we obtain the non-minimal equations of motion

of the Kirchhoff beam
Aρü = n+N ′C ,

Aρẅ = q +Q′C ,

−Iρα̈ = M ′
I −QC .

By replacing NI with NC in (7.28), we obtain the total stress distribution of the Kirchhoff
beam.

In this chapter, we have introduced the well-known equations of motion of the plane
classical beam theories as induced theories using the principle of virtual work of a con-
strained continuous body. The virtual work together with the solution of the equations of
motion and non-admissible virtual displacements have enabled us to extract the constraint
stresses. It is important to notice, that the constraint stresses have only been extracted up
to certain indeterminacy. Doing further assumptions on the constraint stress distribution,
the total stress distribution (7.28) consequently has been uniquely determined. The main
achievement of this chapter is that the very classical results of the equations of motion
and the stress distributions of the plane classical beams are obtained by the principle of
virtual work in a purely analytical way.



Chapter8
Augmented Nonlinear Beam Theories

Augmented nonlinear beams are beams whose constrained position field and insofar whose
cross section deformations are more involved than those in the classical theory. In classical
theories the deformation of the cross sections are described by six generalized position
functions, whose dual kinetic quantities are resultant contact forces and contact couples.
Since the balance of linear and angular momentum hold six equations, it is also possible to
derive the equations of motion of an induced theory for classical beams from the balance
of linear and angular momentum, cf. Simo (1985). Assuming more complex deformation
states of the cross sections using more than six generalized position functions, as for
instance to describe in-plane deformation or out-of-plane warping, more complex and
counterintuitive generalized resultant contact forces do appear. The postulation of the
correct intrinsic equations requires much mechanical intuition. Hence, we determine the
equations of motion of the nonlinear two-director Cosserat beam and the nonlinear Saint–
Venant beam in a concise way in the sense of induced beam theories.

In Section 8.1, we introduce the nonlinear Cosserat beam which is intensely discussed
in Naghdi (1980) and Rubin (2000). In Section 8.2, we treat a beam theory with out-of-
plane warping, derived by Danielson and Hodges (1988) in its static version as an induced
theory. A dynamical version of the Saint–Venant beam is obtained in Simo and Vu-Quoc
(1991) as an intrinsic theory. In accordance to Saint–Venants solution of a linear elastic
body under torsion, who has recognized the effect of warping fields, we call this theory
Saint–Venant beam theory.

8.1 The Nonlinear Cosserat Beam

The Cosserat beam theory goes back to the celebrated work of the Cosserat brothers
Cosserat and Cosserat (1909) who developed intrinsic theories for generalized one-, two-
and three-dimensional continua founded on an action principle. For further historical
information and an alternative derivation of the upcoming equations of motion of the
nonlinear two-director Cosserat beam, we refer to the Rubin (2000)1.

1Rubin (2000) induces the equations of motion of the nonlinear Cosserat beam from the balance of
angular, linear and averaged linear momentum. Without recognizing, using the balance of averaged linear
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Kinematical assumptions

Similar to the treatment in Chapter 5, we first assume at a given instant of time t a
placement of the slender body in E3, at which the body covers the subset Ωt ⊂ E3.
We identify the characteristic direction of the slender body with an arbitrarily chosen
centerline r which propagates along the largest expansion of the body. Subsequently,
we identify every point of the continuous body in Ωt with a unique point of the set
B := ξ(·, t)−1(Ωt) ⊂ R3. Then we choose the body chart θ such that the centerline r is
parametrized by θ3 =: ν only. For a Cosserat beam, we assume the existence of a motion
given by the constrained position field

ξ(θα, ν, t) = x(q(·, t))(θα, ν) = r(ν, t) + θαdα(ν, t) , (8.1)

where the generalized position functions q(·, t) are recognized as r(·, t), d1(·, t) and d2(·, t).
The centerline is given by the space curve r(·, t) = ξ(0, 0, ·, t) and is bounded by its ends
ν = ν1 and ν = ν2 for ν2 > ν1. At every material point ν of the centerline r two directors
dα are attached which span the plane cross section of the beam. In contrast to the classical
beam, the directors are allowed to deform. Hence, the cross sections remain plane, but
in-plane deformation may occur. The current state of the cross section ξ(Ā(ν), ν, t) is
parametrized by the coordinates (θ1, θ2) ∈ Ā(ν), where Ā(ν) :=

{
(θ1, θ2) | (θ1, θ2, ν) ∈ B

}
.

In (8.1), we have identified the generalized position functions q(·, t) with r(·, t), d1(·, t) and
d2(·, t). Hence, the generalized position functions q(·, t) evaluated at ν can be considered
as a point on the 9-dimensional manifold E3 × E3 × E3.

A body is modeled as a Cosserat beam, when the in-plane deformation is assumed
to be relevant for the motion. We want to mention, that the in-plane deformation is
described by the two directors only. According to the classification of Naghdi and Rubin
(1984) merely normal cross section extension, tangential shear deformation and normal
cross sectional shear deformation may appear.

Since the directors are unconstrained, there is no such kinematical quantity as a ro-
tation. Rotations commonly appear in the context of rigidified and extended objects.
According to the constrained position field, the velocity and acceleration of a material
point are introduced by the total time derivative of the constrained position field (8.1) as

ẋ = ṙ + θαḋα , ẍ = r̈ + θαd̈α . (8.2)

The partial derivatives of the constrained position field follow straight forward from (8.1)

x,α = dα , x′ = r′ + θα(dα)′ , (8.3)

where the partial derivative with respect to ν is still denoted by a superposed prime (·)′.
The admissible virtual displacements with respect to the constrained position field (8.1)
and the corresponding partial derivatives are

δx = δr + θαδdα , δx,α = δdα , δx′ = δr′ + θα(δdα)′ . (8.4)

momentum, he applies the principle of virtual work for admissible virtual displacements.
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For the formulation of constitutive laws or for the determination of mass densities it is
convenient to introduce a special configuration, called reference configuration. Let r0 and
Dα be the reference generalized position functions of Q, then the reference configuration
of the beam corresponds to the constrained position field

Ξ(θα, ν) = X(Q)(θα, ν) = r0(ν) + θαDα(ν) . (8.5)

We call the space curve r0 = Ξ(0, 0, ·) the reference curve of the beam. The directors Dα

describe the reference state of the cross section Ξ(Ā(ν), ν) at ν.

Virtual work contribution of internal forces

In the following, we determine the contribution of the virtual work due the admissible
virtual displacements (8.4). According to the principle of d’Alembert–Lagrange (4.8), the
constraint stresses due to the constrained position field drop out and the boundary value
problem of the nonlinear Cosserat beam is obtained.

Applying the derivatives of the admissible virtual displacements (8.4) to the internal
virtual work of the continuous body (4.1), we obtain by the common split of the integration
the internal virtual work of the Cosserat beam as

δW int =

∫
B

ti · δx,i d3θ =

∫ ν2

ν1

{δdα · kα + δr′ · n + (δdα)′ ·mα} dν . (8.6)

Herein, the integrated kinetic quantities kα, n and mα are the intrinsic director cou-
ples, the resultant contact forces and the resultant director contact couples of the current
configuration defined by

kα(ν, t) =

∫
Ā(ν)

tαd2θ , mα(ν, t) =

∫
Ā(ν)

θαt3d2θ , n(ν, t) =

∫
Ā(ν)

t3d2θ . (8.7)

In order to make the connection to an intrinsic theory, it is possible to introduce an
equivalence class of forces. Force distributions in the Euclidean space which have the same
intrinsic director couples, the same resultant contact forces and the same director contact
couples are considered to be equivalent. The representatives of this equivalence class are
then identified with the internal generalized forces of an intrinsic Cosserat beam theory
which postulates the right-hand side of (8.6) as its internal virtual work of the generalized
one-dimensional continuum. By the definition of an equivalence class, we decouple our
induced theory from the theory of a constrained three-dimensional continuous body and
arrive at an intrinsic theory. It is worth mentioning, that since we have no rotations
as kinematical quantities, also no resultant contact couples in the sense of the classical
theory appears in the equations of motion of the Cosserat beam.

Virtual work contribution of inertia forces

As for the classical beam, the pullback of the mass distribution ρ0 with respect to the
reference configuration (8.5) allows us to formulate the mass distribution on the domain B
as

dm = ρ0G
1/2 d3θ , G1/2 = X,1 ·(X,2×X,3 ) . (8.8)
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In accordance with the virtual work of (4.2), the accelerations (8.2) and the admissible
virtual displacements (8.4), the virtual work of the inertia forces

δW dyn =

∫
B

δx · ẍ dm =

∫ ν2

ν1

{∫
Ā(ν)

(δr + θαδdα) · (r̈ + θβd̈β)ρ0G
1/2 d2θ

}
dν

=

∫ ν2

ν1

{
δr · Aρ0 r̈ + δdα · qαρ0 r̈ + δr · qβρ0d̈β + δdα ·Mαβ

ρ0
d̈β

}
dν

(8.9)

is obtained, where in the last line the time independent inertia coefficients

Aρ0(ν) :=

∫
Ā(ν)

ρ0G
1/2 d2θ , qαρ0(ν) :=

∫
Ā(ν)

θαρ0G
1/2 d2θ ,

Mαβ
ρ0

(ν) :=

∫
Ā(ν)

θαθβρ0G
1/2 d2θ .

are defined. If the centerline coincides with the line of centroids, then the inertia term qαρ0
vanishes.

Virtual work contribution of external forces

As for the classical beam theory, we do allow forces df with Dirac-type contributions.
Using the common split of integration and using the admissible virtual displacements (8.4),
we obtain the external virtual work contribution

δW ext =

∫
B

δx · df =

∫
[ν1,ν2]

{δr · dn + δdα · dmα} ,

where the resultant external forces distribution dn and the resultant external director
couple distribution are the integrated quantities

dn(ν, t) :=

∫
Ā(ν)

df , dmα(ν, t) :=

∫
Ā(ν)

θαdf .

With the same equivalence class argument as for the resultant contact forces and director
couples, we can identify the resultant external forces and director couples with external
generalized force distributions of an intrinsic theory. We want to emphasize again, that
naturally there appear no couples as in the classical beam theory. Nevertheless, together
with constraint conditions on the directors, it is possible to assign couples from the clas-
sical theory to a Cosserat beam. As a consequence, at the point of application, the cross
section is rigidified. For the sake of brevity, we only allow discontinuities in the force
contributions at the boundaries ν1 and ν2 and obtain the virtual work contribution for
external forces as

δW ext =

ν2∫
ν1

{δr · n + δdα ·mα} dν +
2∑
i=1

{δr(νi) · ni + δdα(νi) ·mi} . (8.10)
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The boundary value problem

Using the principle of virtual work of the continuous body (4.3) with the total stress (4.7),
together with the modified virtual work contributions (8.6), (8.9), (8.10) and the principle
of d’Alembert–Lagrange (4.8), we obtain to the weak variational formulation

δW =

∫ ν2

ν1

{
δr · (Aρ0 r̈ + qβρ0d̈β − n) + δr′ · n + (δdα)′ ·mα + δdα · (kα + qαρ0 r̈

+Mαβ
ρ0

d̈β −mα)
}

dν +
2∑
i=1

{δr · ni + δdα ·mα
i }|ν=νi

= 0 ∀δr, δdα

of the nonlinear Cosserat beam. Using integration by parts, the virtual work is expressed
in the form

δW = −{δr · (n + n1) + δdα · (m + mα
1 )} |ν=ν1

−
ν2∫
ν1

{
δr · (Aρ0 r̈ + qβρ0d̈β − n− n′) + δdα · (kα + qαρ0 r̈ +Mαβ

ρ0
d̈β −mα − (mα)′)

}
dν

+ {δr · (n− n2) + δdα · (m + mα
2 )} |ν=ν2 = 0 ∀δr, δdα ,

which corresponds to the strong variational formulation of the Cosserat beam. If the
functions in the round brackets are continuous and if the variations of the generalized
position functions are smooth enough, then by the Fundamental Lemma of Calculus
of Variation, the former terms have to vanish pointwise. This leads to the complete
boundary value problem with the equations of motion of the Cosserat beam which are
valid for ν ∈ (ν1, ν2)

n′ + n = Aρ0 r̈ + qβρ0d̈β ,

(mα)′ + mα − kα = Mαβ
ρ0

d̈β + qαρ0 r̈ ,

together with the boundary conditions n(ν1) = −n1, mα(ν1) = −mα
1 and n(ν2) = n2,

mα(ν2) = mα
2 .

Constitutive law and restrictions on internal forces

In the same spirit as for the classical beam theory, we propose a semi-induced theory for
the nonlinear Cosserat beam, where we formulate an elastic generalized constitutive law
relating generalized strains and generalized internal forces. Since we do not consider any
Cosserat beam with further constraints, which is possible, we omit the subscript (·)I for
the impressed generalized internal forces.

The most basic constitutive law for a nonlinear Cosserat beam is an elastic force law
in the sense of (5.28), such that

Ŵ (ν, t) = W (γi, (δα)i, (εα)i) ,
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where we have introduced the generalized strain measures

γi(ν, t) := ei · r′ − ei · r′0 ,
(δα)i(ν, t) := ei · dα − ei ·Dα ,

(εα)i(ν, t) := ei · (dα)′ − ei · (Dα)′ ,

with (e1, e2, e3) being an inertial orthonormal basis of E3. It can readily be shown, that
the chosen generalized strains are compatible with the internal virtual work (8.6) of the
induced theory. The variation of the potential W is written as

δW =
∂W

∂γi
ei · δr′ +

∂W

∂(δα)i
ei · δdα +

∂W

∂(εα)i
ei · δ(dα)′

= n · δr′ + kα · δdα + mα · (δdα)′ ,

where it is summed over repeated latin and over repeated greek indices and the generalized
internal forces

n :=
∂W

∂γi
ei , kα :=

∂W

∂(δα)i
ei , mα :=

∂W

∂(εα)i
ei

have been recognized. In accordance with the law of interaction (4.4), from the three-
dimensional theory, we induce an additional restriction on our generalized internal forces.
Since the symmetry condition (4.5) has to hold pointwise, also its integration over the
cross section must be valid, i.e. ∫

Ā(ν)

x,i×ti d2θ = 0 ∀ν

Using the partial derivatives of the constrained position field (8.3) together with the
definition of the generalized internal forces (8.7), we identify a symmetry condition

dα × kα + r′ × n + (dα)′ ×mα = 0 ∀ν (8.11)

for the intrinsic theory. The additional condition (8.11) on the internal generalized forces
makes it elaborate to formulate a constitutive law. A very extended treatise on constitu-
tive laws of Cosserat beams is given in the book of Rubin (2000) or in the corresponding
publication Rubin (1996). Another treatise on that topic can be found in O’Reilly (1998).

8.2 The Nonlinear Saint–Venant Beam

In all previously discussed beam theories, the cross sections are assumed to remain plane
during the motion of the beam. In the work of Saint–Venant, the deformation of homoge-
nous linear elastic prismatic bodies which are loaded only near their ends are investigated.
The exact solution of the torsional problem for non-circular cross sections leads to out-of-
plane deformation of the cross sections. These solutions suggest that the classical beam
theories are inadequate for a three-dimensional analysis of beam-like bodies. In this
section, we derive the equations of motion of a beam which describes also out-of-plane
warping. Since the warping field is generally related to the investigations of Saint–Venant,
we call the following beam theory nonlinear Saint–Venant beam theory.
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Kinematical assumptions

For the nonlinear Saint–Venant beam, we assume the following constrained position field:

ξ(θα, ν, t) = x(q(·, t))(θα, ν) = r(ν, t) + θαdα(ν, t) + λ(θα, ν)ψ(ν, t)d3(ν, t) , (8.12)

where the generalized position functions q(·, t) are recognized as r(·, t), d1(·, t), d2(·, t)
and ψ(·, t). The centerline is given by the space curve r(·, t) = x(0, 0, ·, t) and is bounded
by its ends ν = ν1 and ν = ν2 for ν2 > ν1. At every material point ν of the centerline r a
positively oriented orthonormal director triad (d1(ν, t),d2(ν, t),d3(ν, t)) is attached which
is related to an inertial basis in E3 by a rotation as introduced in (5.2). Superimposed to
this rigid motion of the plane, a point on the cross section is allowed to deform additionally
out-of-plane in direction of d3. This deformation is not arbitrary, but it is induced by
an ansatz function λ(θα, ν)ψ(ν, t) composed by the multiplication of two functions. The
geometrical form of the out-of-plane displacement is given by a Saint–Venant warping
function λ(θα, ν) which depend on the coordinates θα and is allowed to vary along the
beam ν. The magnitude of the deformation is described by the warp amplitude ψ(ν, t)
depending on the coordinate of the characteristic expansion ν only. The warping function
is given analytically for simple cross section forms or evaluated by a precomputational
step for more complex cross section forms and has to require∫

Ā(ν)

λd2θ =

∫
Ā(ν)

λθαd2θ = 0 . (8.13)

In (8.12) we have identified the generalized position functions q(·, t) with r(·, t), d1(·, t),
d2(·, t) and ψ(·, t) and have constrained the directors d1(·, t) and d2(·, t) by (5.2) to re-
main orthonormal. Hence, the generalized position functions q(·, t) evaluated at ν can
be considered as a point on the 7-dimensional manifold E3 × SO(3) × R. The large dis-
placement of the beam is described by the motion of the centerline and the rotation of
the cross sections. The out-of-plane warping field, whose magnitude is small compared
to the displacements of the centerline, models an additional degree of freedom of the
continuum which is especially relevant for torsional problems. Nevertheless, we still re-
strict in-plane warping, which would be necessary to allow an exact solution for the pure
bending problem of a linear elastic continuum.

It is convenient to abbreviate the position vector from the centerline to a material
point in the cross section by

ρ(θα, ν) = x− r = θαdα + λψd3 . (8.14)

The velocity and the acceleration fields

ẋ = ṙ + ω × ρ+ ψ̇λd3 ,

ẍ = r̈ + ω̇ × ρ+ ω × (ω × ρ) + 2ω × (ψ̇λd3) + ψ̈λd3

(8.15)

are introduced by taking the total time derivative of the position field (8.12) and using
the angular velocity ω defined in (5.5). By applying the effective curvature (5.4), the
partial derivatives of (8.12) are of the form

x,α = dα + λ,α ψd3 , x′ = r′ + k× ρ+ (λψ)′d3 . (8.16)
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With the virtual rotations (5.6), for the admissible virtual displacement field

δx = δr + δφ× ρ+ δψλd3

is obtained. In accordance with (5.6) and (8.14), the variation of the position vector ρ is

δρ = δφ× θαdα + δψλd3 + δφ× λψd3 = δφ× ρ+ δψλd3 .

The variations of the partial derivatives with respect to θα

δx,α = δφ× x,α +δψλ,α d3 (8.17)

and the variation of the partial derivative with respect to ν

δx′ = δr′ + δk× ρ+ k× δρ+ δψλ′d3 + δψ′λd3 + δφ× (λψ)′d3 (8.18)

follow directly from (8.16).

Virtual work contribution of internal forces

The transformation of the internal force contribution follows closely to the transformation
of the internal force contribution of the classical beam. Using (8.17) and (8.18) together
with the property of the cross product of (B.2), the internal virtual work density (4.1)
can be written as

ti · δx,i = δφ · (x,α×tα) + δψλ,α tα · d3 + δr′ · t3 + δk · (ρ× t3)

+ t3 · (k× δρ+ δψλ′d3 + δψ′λd3 + δφ× (λψ)′d3) .
(8.19)

Applying the symmetry condition (4.5), the first term of (8.19) can be written with x′ of
(8.16) and together with the property of the cross product of (B.2) the internal virtual
work density takes the form

ti · δx,i = −t3 · (δφ× r′ + δφ× (k× ρ) + δφ× (λψ)′d3) + δψλ,α tα · d3 + δr′ · t3

+ δk · (ρ× t3) + t3 · (k× δρ+ δψλ′d3 + δψ′λd3 + δφ× (λψ)′d3) . (8.20)

Using (8.2) and rearranging the terms, we manipulate the expression further to

ti · δx,i = t3 · (δr′ − δφ× r′) + δk · (ρ× t3) + t3 · (k× (δφ× ρ) + δφ× (ρ× k))

+ δψ(λ,α tα · d3 + t3 · (k× λd3) + t3 · λ′d3) + δψ′t3 · λd3 ,

where the term δφ× (λψ)′d3 cancels. The Jacobi identity (B.1) and the skew-symmetry
of the cross-product finally leads to

ti · δx,i = t3 · (δr′ − δφ× r′) + (ρ× t3) · (δk− δφ× k) + δψ′t3 · λd3

+ δψ d3 · (λ,α tα + λt3 × k + λ′t3)
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as the internal virtual work density for admissible virtual displacements. With the usual
split of the integration, the internal virtual work of the Saint–Venant beam is represented
as

δW int =

∫ ν2

ν1

{n · (δr′ − δφ× r′) + m · (δk− δφ× k) + δψ′D + δψB} dν . (8.21)

Herein, the integrated kinetic quantities

n(ν, t) :=

∫
Ā(ν)

t3 d2θ , m(ν, t) :=

∫
Ā(ν)

(ρ× t3) d2θ, D(ν, t) := d3 ·
∫

Ā(ν)

λt3d2θ ,

B(ν, t) := d3 ·
∫

Ā(ν)

(λ,α tα + λt3 × k + λ′t3)d2θ .

are the resultant contact forces, the resultant contact couples, the resultant contact bi-
moments and the resultant contact bi-shears, respectively, of the current configuration.2

Virtual work contribution of inertia forces

As for the Cosserat beam, we choose the mass distribution (8.8). For the manipulation of
the inertia terms it is convenient to introduce some abbreviations of integral expressions
and their properties. In order that the following transformations do not explode, we
consider the centerline to be the line of centroids. According to that choice, together
with the requirement (8.13) for the warping function, all terms which are linear in ρ and
integrated over the cross section, vanish. The cross section inertia density is introduced
as ∫

Ā(ν)

ρ̃ρ̃Tρ0G
1/2 d2θ = Iρ0(ν, t) + ψ2Ξρ0(ν)Pd3(ν) ,

where Iρ0 corresponds to the cross section inertia density (5.19) of the classical beam3

and the projection Pd3 and the warping inertia density are defined as

Pd3(ν, t) := d̃3(ν, t)d̃3(ν, t)T , Ξρ0(ν) :=

∫
Ā(ν)

λ2ρ0G
1/2 d2θ .

Furthermore, it is convenient to abbreviate the product of the cross section inertia density
and the angular velocity by

h(ν, t) := (Iρ0(ν, t) + ψ2(ν, t)Ξρ0(ν)Pd3(ν, t))ω(ν, t) .

By considering the derivation in (5.21) and using the same arguments for the projec-
tion Pd3 , it can easily be shown that

ḣ = (Iρ0 + ψ2Ξρ0Pd3)ω̇ + ω × (Iρ0 + ψ2Ξρ0Pd3)ω + 2ψψ̇Ξρ0Pd3ω .

2Since Danielson and Hodges (1988) introduce the constrained position field with a warping function
which is constant along ν, the λ′-term in the resultant contact bi-shear vanishes in their derivation.

3Notice, that within the classical theory ρ = θαdα.
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With the admissible virtual displacements (8.12) and the accelerations (8.15) of the re-
stricted kinematics, the virtual work contribution of the inertia forces as

δW dyn =

∫
B

δx · ẍ dm =

∫
B

{
(δr + δφ× ρ+ δψλd3) · (r̈ + ω̇ × ρ+

+ω × (ω × ρ) + 2ω × (ψ̇λd3) + ψ̈λd3)
}
ρ0G

1/2 d3θ

is obtained. For the sake of clarity, the inertia terms are treated separately for all the
variations δr, δφ and δψ. Since the terms linear in ρ integrated over the cross section
vanish, the inertia forces in δr-direction are of the form∫

B

δr · ẍ dm =

∫ ν2

ν1

δr · Aρ0 r̈dν , (8.22)

where the cross section mass density (5.17) has been used. The skew-symmetry of the
cross product, together with (B.2) and (B.5), implies the δφ-terms of the inertia forces as∫

B

(δφ× ρ) · ẍ =

∫
B

{
δφ · (ρ̃ρ̃Tω̇ + ω̃ρ̃ρ̃Tω + 2ψψ̇λ2Pd3ω)

}
ρ0G

1/2d3θ

=

∫ ν2

ν1

δφ · ḣ dν .
(8.23)

For the δψ-terms all terms which are linear in λ and those who are orthogonal to d3 drop
out. Using (B.3) and (B.4), the inertia contribution is of the form∫

B

δψλd3 · ẍ =

∫ ν2

ν1

{
δψd3 · Ξρ0(ψ̈d3 + ω × (ω × ψd3))

}
dν

(B.3)
=

∫ ν2

ν1

{
δψΞρ0

(
ψ̈ − ψ

(
(ω · ω)− (ω · d3)2

))}
dν

(B.4)
=

∫ ν2

ν1

{
δψΞρ0

(
ψ̈ − ψ(ω × d3)2

)}
dν .

(8.24)

According to (8.22) – (8.24), the virtual work contribution

δW dyn =

∫ ν2

ν1

{
δr · Aρ0 r̈ + δφ · ḣ + δψΞρ0

(
ψ̈ − ψ(ω × d3)2

)}
dν (8.25)

can be written in compact form.

Virtual work of external forces

As for the classical beam theory, we do allow forces df with Dirac-type contributions.
Using the usual split of the integration together with the virtual displacements (8.2), we
obtain the external virtual work contribution

δW ext =

∫
B

δx · df =

∫
[ν1,ν2]

{
δr · dn + δφ · dm + δψdD

}
,
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where the generalized external force distributions

dn :=

∫
Ā(ν)

df , dm :=

∫
Ā(ν)

ρ× df , dD := d3 ·
∫
Ā(ν)

λdf ,

have been recognized. For the sake of brevity, we only allow discontinuities in the force
contributions at the boundaries ν1 and ν2 and obtain the virtual work contribution for
external forces as

δW ext =

∫ ν2

ν1

{
δr · n + δφ ·m + δψD

}
dν+

2∑
i=1

{
δr · ni + δφ ·mi + δψDi

}
|ν=νi . (8.26)

The boundary value problem

Using the principle of virtual work of the continuous body (4.3) with the total stress (4.7),
together with the modified virtual work contributions (8.21), (8.25) and (8.26), we obtain
the weak variational formulation

δW =

∫ ν2

ν1

{n · (δr′ − δφ× r′) + m · (δk− δφ× k) + δr · (Aρ0 r̈− n)

+δφ · (m− ḣ) + δψ′D + δψ
(

Ξρ0

(
ψ̈ − ψ(ω × d3)2

)
+B −D

)}
dν

+
2∑
i=1

{
δr · ni + δdα ·mα

i + δψDi

}∣∣
νi

= 0 ∀δr, δφ, δψ

of the nonlinear Saint–Venant beam. Applying the identity (5.11) and integration by
parts, the virtual work is expressed in the form

δW = −
{
δr · (n + n1) + δφ · (m + m) + δψ(D +D1)

}
|ν=ν1

+

∫ ν2

ν1

{
δr · (Aρ0 r̈− n− n′) + δφ · (ḣ−m−m′ − r′ × n)+

+δψ
(

Ξρ0

(
ψ̈ − ψ(ω × d3)2

)
+B −D′ −D

)}
dν

+
{
δr · (n− n1) + δφ · (m−m) + δψ(D −D1)

}
|ν=ν2 = 0 ∀δr, δφ, δψ ,

which corresponds to the strong variational formulation of the Saint–Venant beam. For
the common arguments of calculus of variations, this leads to the complete boundary
value problem with the equations of motion of the nonlinear Saint–Venant beam which
are valid for ν ∈ (ν1, ν2)

n′ + n = Aρ0 r̈ ,

m′ + r′ × n + m = ḣ ,

D′ −B +D = Ξρ0

(
ψ̈ − ψ(ω × d3)2

)
,

together with the boundary conditions n(ν1) = −n1, m(ν1) = −m1, D(ν1) = −D1 and
n(ν2) = n2, m(ν2) = m2, D(ν2) = D2.
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Constitutive laws

In comparison with the classical beam formulation, two new scalar quantities appear
additionally. Thus, the generalized strain measures (5.29) and (5.30) are completed by ψ
and ψ′. A very straight forward elastic potential is

Ŵ (ν) = W (γi, κi, ψ
′, ψ) ,

The variation of the elastic potential leads to the internal virtual work

δW =
∂W

∂γi
· (δr′ · di + r′ · δdi) +

∂W

∂ki
di · δkjdj +

∂W

∂ψ
δψ +

∂W

∂ψ′
δψ′

= n · (δr′ − δφ× r′) + m · (δk− φ× k) +Bδψ +Dδψ′ ,

where we have recognized

n :=
∂W

∂γi
di , m :=

∂W

∂ki
di , B :=

∂W

∂ψ
, D :=

∂W

∂ψ′
.

For an explicit formulation of a constitutive law we refer to Simo and Vu-Quoc (1991).



Chapter9
Conclusions and Outlook

The thesis has been divided into two parts. Whereas in the first part questions on the
foundations of continuum mechanics are discussed, the second part applies the obtained
theory to induce a number of different beam theories. To retain the purpose that the two
parts may be read independently, the conclusions and the outlook of both are given in
separate sections.

9.1 On the Foundations of Continuum Mechanics

In Part I of this thesis differential geometric concepts and their application to mechanical
objects have been discussed. Thereby, an intrinsic differential geometric setting of a
continuous body has been obtained. In the sense of analytical mechanics, the space of
forces of a continuous body is defined as the set of linear functionals on the space of virtual
displacements. An affine connection on the physical space which induces a covariant
derivative on the space of virtual displacements allows for a non-unique representation
of forces by vector and tensor valued measures. Classically, the vector and tensor valued
measures represent the external and the internal forces, respectively. How internal and
external forces interact is postulated in the principle of virtual work.

The scientific merits of the first part of the thesis can be summarized as follows:

− In this thesis the spatial virtual displacement field has been defined as the infinites-
imal generator of a smooth global flow on the physical space. The virtual dis-
placement field has then been defined as the pullback section of the spatial virtual
displacement field with respect to the configuration of the body. Using the iso-
morphism between the tangent space of the configuration manifold and the set of
pullback sections, the virtual displacement field has been identified with an element
of the tangent space of the configuration manifold.

− A definition of the covariant derivative of a pullback section induced by an affine
connection on the ‘target’-manifold has been introduced. Furthermore, its local
representation has been shown in this thesis.
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− The forces of a continuous body and their representations have been obtained in the
sense of duality as proposed by Segev. The interaction between the different classes
of forces, i.e. internal and external forces, has then been introduced in this thesis by
postulating a virtual work principle which is in accordance with the first gradient
theory of Germain.

− A split of the variational stress into a tensor density, classically denoted as the stress
tensor, and a volume element of the body has been introduced. This point of view
on the classical stress, given in this thesis, clarifies the non-tensorial transformation
rules between the classical stresses as e.g. the Cauchy or 1st Piola-Kirchhoff stress.

− By introducing rigidifying virtual displacements as Killing vector fields, we have
introduced a concept to define internal forces in an intrinsic setting. A proof of the
symmetry condition of the stress under certain regularity assumptions still needs to
be given.

The author is aware that rigorous proofs for some of the statements are missing. The
challenging task of an intrinsic differential geometric description of continuum mechanics
is the interaction between infinite dimensional geometry, measure theory and functional
analysis. The combination of all these mathematical topics forms a rather modern research
field in pure mathematics. For a concise formulation of an intrinsic theory, first, the
required mathematical framework has to be gathered and prepared. The following open
questions and tasks are identified:

− The topology of the infinite dimensional manifold of embeddings and its mechanical
interpretation have to be discussed. The possibilities to relax the continuity assump-
tions of the embeddings, such that the manifold structure of the set of configurations
is preserved, have to be analyzed. The corresponding admissible force representa-
tives have to be studied. For instance, for piecewise continuous virtual displacement
fields it is assumed that traction forces within the body can be described.

− A complete proof of Theorem 2.3 has to be given.

− The representation theorem of C1(κ∗TS)∗-forces has to be proved. A representation
theorem for relaxed continuity assumptions must be discussed.

− The symmetry condition of the variational stress for rigidifying virtual displacements
for the Euclidean three-space as physical space has to be derived.

− It has to be shown, that the classical stresses, as e.g. Cauchy stress, Kirchhoff stress
or Biot stress, arise from the variational stress by choosing distinct configurations,
volume elements and coordinate representations.

− Using Stokes’ theorem on manifolds and the traction stress of Segev (2013) the
strong variational form of the continuous body has to be derived.
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− For hyperelastic materials the internal virtual work has to be obtained by a variation
of an internal energy. Together with an intrinsic differential geometric formulation
of variational calculus this leads directly to the theory of covariant elasticity.

Comparing the equilibrium equation of a linear elastic bar of infinite length with
the equation of motion of a particle moving in a one-dimensional physical space, one
recognizes that the differential equations coincide. Moreover, the concept of stress and the
concept of linear momentum are the same from a geometric point of view. Furthermore,
driven by the insights of general relativity, a vision of an intrinsic differential geometric
description of classical continuum dynamics emerges. In such a description, the body is a
space-time continuum which is mapped to the physical space modeled as a vector bundle.
The vector bundle consists of a one-dimensional Riemannian base manifold, modeling
the time, together with a typical fiber of a three-dimensional Euclidean vector space,
modeling the real space. An affine connection on the vector bundle defines the inertial
forces and corresponds to the choice of an inertial frame in classical mechanics. Such an
invariant theory constitutes the basis of classical mechanics and the virtual work, or more
appropriate the virtual action is ‘The Invariant Quantity’ of this theory.

9.2 Beam Theories

Starting from the principle of virtual work of a continuous body and by considering a
beam as a continuous body with a constrained position field, induced beam theories have
been obtained in this thesis in a systematic and concise way. A constrained position field
is guaranteed by a constraint stress field, whose constitutive law can only be formulated
in variational form with the principle of d’Alembert–Lagrange. Due to the principle
of d’Alembert–Lagrange, the constraint stress field vanishes for all admissible virtual
displacements, i.e. for variations of the constrained position field. The most convenient
approach for a systematic treatment of an arbitrary induced beam theory is therefore given
by the principle of virtual work of a continuous body. This emphasizes the importance of
the principle of virtual work in the field of structural mechanics.

The main contributions of the second part of the thesis can be summarized as follows:

− As an example of how specific theories are induced from a general mechanical the-
ory, beam theories have been induced in Part II from the theory of a continuous
body. A variational formulation of the general theory, together with the principle
of d’Alembert–Lagrange allows us to induce the specific beam theory merely by the
choice of the constrained position field. This remains in the spirit, as discussed in
Section 1.2, that the kinematics defines which kind of forces we may expect.

− Assuming various constrained position fields together with further constraint con-
ditions on the level of generalized position fields, several beam theories have been
induced in this thesis. The classical theories of Timoshenko, Euler–Bernoulli and
Kirchhoff have been formulated in a nonlinear and linearized setting. Additionally,
the derivation of augmented beam theories, such as the two-director Cosserat-beam,
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and the Saint–Venant beam, emphasizes the systematic procedure of an induced
beam theory obtained by the principle of virtual work of the continuous body.

− The classical plane linearized beam theory is generally applied in the theory of
strength of materials. By the application of non-admissible virtual displacements,
the total stress distribution of the constrained continuous body is obtained. In this
thesis, this analytical procedure has led to the insight that the constraint stress dis-
tribution cannot be determined uniquely and certain assumptions on the constraint
stress distribution have to be taken. Hence, the total stress distribution used for
the determination of failure criteria in technical mechanics is not unique.

− A valuable by-product of the formulation using the principle of virtual work is, that
the weak variational form of all beam theories have been derived automatically in
this thesis. A finite element discretization, as in Eugster et al. (2014), follows in a
very natural way by further constraining the generalized position fields such that
those can be described by finitely many degrees of freedom. Thus, also the numerical
discretization fits into the concept of induced theories.

The above insight brings forth a wealth of new open questions which are to be addressed
in further research. Most urgent is to derive the nonlinear theories in this thesis not
only as semi-induced, but also as fully induced theories, i.e. using constitutive laws of
a continuous body to determine the constitutive laws of the internal generalized forces.
The interaction between the constrained position field and the constitutive law has to be
discussed. For instance in the classical beam theory, the Poisson effect modeled within a
three-dimensional linear elastic and isotropic material law leads only to additional con-
straint stresses. Especially for a numerical treatment of an induced theory, the constrained
position field and the material law have to harmonize. Another topic is to derive more
elaborate augmented beam theories which include in- and out-of-plane warping as pro-
posed by Bauchau and Han (2014) and Papes (2012). Lastly, experimental work is needed
to find out which beam theory is most successfully applied to a given application problem.
There is no such thing as ‘The Beam’, every application asks for its own solution.

In the same spirit as for the beam, we are able to describe more complex structural
elements as constrained three-dimensional continuous bodies:

− An incompressible continuum is a classical continuum with three characteristic di-
rections with pointwise incompressibility constraints.

− A shell is a continuous body with two characteristic directions where the irrelevant
deformations are eliminated by a constrained position field.

− A rigid body is a continuous body with no characteristic direction and pointwise
rigidity constraints.

Hence, one should be able to induce all specific theories such as rigid body mechanics,
multibody mechanics, beam theories and shell theories from the theory of a continuous
body. Such a unification of mechanics will not only bring more clarity in the scientific
field but will also allow to develop more complex structural elements and will lead to more
efficient numerical discretizations.



AppendixA
Multilinear Algebra

This chapter presents concepts from multilinear algebra based on the basic properties of
finite dimensional vector spaces and linear maps. The primary aim of the chapter is to
give a concise introduction to alternating tensors which are necessary to define differential
forms on manifolds. Many of the stated definitions and propositions can be found in Lee
(2012), Chapters 11, 12 and 14. Some definitions and propositions are complemented by
short and simple examples.

First, in Section A.1 dual and bidual vector spaces are discussed. Subsequently, in
Section A.2 – A.4, tensors and alternating tensors together with operations such as the
tensor and wedge product are introduced. Lastly, in Section A.5, the concepts which are
necessary to introduce the wedge product are summarized in eight steps.

A.1 The Dual Space

Let V be a real vector space of finite dimension dimV = n. Let (e1, . . . , en) be a basis of
V . Then every v ∈ V can be uniquely represented as a linear combination

v = viei , (A.1)

where summation convention over repeated indices is applied. The coefficients vi ∈ R are
referred to as components of the vector v.

Throughout the whole chapter, only finite dimensional real vector spaces, typically
denoted by V , are treated. When not stated differently, summation convention is applied.

Definition A.1 (Dual Space). The dual space of V is the set of real-valued linear func-
tionals

V ∗ := {ω : V → R : ω linear} . (A.2)

The elements of the dual space V ∗ are called linear forms on V .

The dual space, equipped with pointwise addition and scalar multiplication is again a
real vector space.
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Proposition A.1. Given any basis (e1, . . . , en) for V , let ε1, . . . , εn ∈ V ∗ be the linear
forms defined by

εi(ej) := δij , (A.3)

where δij is the Kronecker delta symbol defined by

δij :=

{
1 if i = j
0 if i 6= j .

(A.4)

Then (ε1, . . . , εn) is a basis for V ∗, called the dual basis to (e1, . . . , en) and consequently
dimV ∗ = dimV . Any linear form ω can be uniquely represented as a linear combination

ω = ωi ε
i , (A.5)

with components ωi = ω(ei).

Proof. We need to show that (ε1, . . . , εn) (i) spans the dual space V ∗ and (ii) is linearly
independent. Let v ∈ V and ω ∈ V ∗.

(i) Due to the linearity of ω we have

ω(v)
(A.1)
= ω(viei)

(A.2)
= viω(ei) . (A.6)

Writing the linear form as a linear combination (A.5) and applying it to v, it follows by
linearity of the linear form and the definition of the dual basis (A.3) that

ω(v) = ωiε
i(vjej)

(A.2)
= ωiv

jεi(ej)
(A.3)
= ωiv

jδij
(A.4)
= ωiv

i . (A.7)

Let ωi = ω(ei). Then comparison of (A.6) and (A.7) proves that (ε1, . . . , εn) spans V ∗.
(ii) To show that (ε1, . . . , εn) is linearly independent, suppose some linear combination

equals zero, i.e. ω = ωiε
i = 0. Applying to both sides an arbitrary vector v ∈ V , it follows

by the computation of (A.7) that

∀v ∈ V : ω(v) = 0 ⇒ ∀ vi ∈ R : viωi = 0 ⇒ ωi = 0 .

Thus, the only linear combination of elements of (ε1, . . . , εn) that sums to zero is the
trivial one. This proves the linear independency of (ε1, . . . , εn).

The application of a linear form ω ∈ V ∗ on a vector v ∈ V is called the duality pairing
and is expressed in components as in (A.7).

Since the dual space V ∗ is also a vector space, we may consider the dual space of
V ∗, called the bidual space V ∗∗ := (V ∗)∗. For each vector space V , there exists a linear
isomorphism

φ : V → V ∗∗ , v 7→ φv : ∀ω ∈ V ∗ , φv(ω) = ω(v) .

Hence, we identify the vectors of the bidual space V ∗∗ naturally with the vectors of the
vector space V . For convenience, we suppress the function φ in our notation and write

φv(ω) =: v(ω) .

The duality pairing between the identified bidual basis ei ∈ V ∗∗ and the dual basis εj ∈ V ∗
is evaluated as

ei(ε
j) = δji .



A.2. Multilinear Forms and Tensors 97

A.2 Multilinear Forms and Tensors

Definition A.2 (Multilinear Form, Tensor). Suppose V1, . . . , Vk are vector spaces. A
map F : V1 × · · · × Vk → R is said to be multilinear, if it is linear in each argument, i.e.
for any i ∈ {1, . . . , k}, vj ∈ Vj, wi ∈ Vi, a, b ∈ R

F(v1, . . . , avi + bwi, . . . ,vk) = aF(v1, . . . ,vi, . . . ,vk) + bF(v1, . . . ,wi, . . . ,vk) .

We refer to multilinear F as multilinear form or tensor of rank k.1 The set of such
multilinear forms is denoted by L(V1, . . . , Vk;R).

Example A.1. Let V and U be vector spaces, then the multilinear form

F : V ∗ × V × U → R, (ω,v,u) 7→ F(ω,v,u)

is a tensor of rank 3.

Example A.2. Let (e1, . . . , en) be the basis vectors of V and (ε1 . . . , εn) the correspond-
ing dual basis. Then the basis vectors

εj : V → R , v 7→ εj(v) = vj ,

ei : V
∗ → R , ω 7→ ei(ω) = ωi ,

are tensors of rank 1, projecting the vector v and the covector ω to their j-th and i-th
component, respectively.

Definition A.3 (Tensor Product). Let V1, . . . , Vk, W1, . . . ,Wl be vector spaces, and let
F ∈ L(V1, . . . , Vk;R) and G ∈ L(W1, . . . ,Wl;R). Define a function

F⊗G : V1 × · · · × Vk ×W1 × · · · ×Wl → R

by
(F⊗G)(v1, . . . ,vk,w1, · · · ,wk) := F(v1, . . . ,vk)G(w1, · · · ,wk) . (A.8)

From the multilinearity of F and G it follows that (F ⊗ G) is multi linear too. So,
F⊗G ∈ L(V1, . . . , Vk,W1, . . . ,Wl;R) and is called the tensor product of F and G.

Example A.3. Let U and V be vector spaces, F : V × U → R and g : V ∗ → R. The
tensor product of F and g is given by the multilinear form

F⊗ g : V × U × V ∗ → R ,

defined by its application on the vectors (v,u,ω) as

(v,u,ω) 7→ (F⊗ g)(v,u,ω) = F(v,u)g(ω) .

1There exists also an abstract definition of tensor spaces as quotient spaces of free vector spaces,
cf. Lee (2012), Chap. 12. Since we are assuming the vector spaces to be finite dimensional, there exists a
canonical isomorphism between the abstract tensor space and the space of multilinear forms. Accordingly,
the two terms multilinear form and tensor are used synonymously.
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Applying the definition of the tensor product (A.8) several times, it follows straight
forward, that the tensor product is bilinear and associative. Insofar it is allowed to write
the tensor products between the tensors F, G and H without any brackets as

F⊗ (G⊗H) = (F⊗G)⊗H =: F⊗G⊗H .

With the tensor product, it is possible to find the building blocks of tensors of arbitrary
rank. The following proposition is formulated and proved for L(U, V, V ∗;R), but extends
on a basis of the space of multi linear forms.

Proposition A.2. Let U , V be vector spaces of dimensions k and l with bases (b1, . . . ,bk)
and (e1, . . . , el), respectively. Let (β1, . . . ,βk) and (ε1, . . . , εl) be the corresponding dual
bases of U∗ and V ∗, respectively. Then the set

B =
{
βα ⊗ εi ⊗ ej : 1 ≤ α ≤ k, 1 ≤ i, j ≤ l

}
is a basis for F ∈ L(U, V, V ∗;R), which therefore has dimension kl2.

Summing repeated greek indices from 1 to k and repeated roman indices from 1 to l,
any multilinear form F can be written as a linear combination

F = F j
αi β

α ⊗ εi ⊗ ej , (A.9)

with F j
αi = F(bα, ei, ε

j).

Proof. The proof is very similar to the proof of Proposition A.1. We need to show that
B is linearly independent and spans L(U, V, V ∗;R). Let u ∈ U , v ∈ V and ω ∈ V ∗. Due
to the multilinearity of F it follows directly that

F(u,v,ω) = F(uαbα, v
iei, ωjε

j) = F(bα, ei, ε
j)uαviωj . (A.10)

Writing the multilinear form as a linear combination (A.9) and applying it to the same
vectors u,v and ω, it follows by the definition of the tensor product that

F(u,v,ω)
(A.9)
= (F j

αi β
α ⊗ εi ⊗ ej)(u,v,ω)

(A.8)
= F j

αi β
α(uβbβ) εi(vmem) ej(ωnε

n)

(A.3)
= F j

αi u
βvmωn δ

α
β δ

i
m δ

n
j

(A.4)
= F j

αi u
αvi ωj .

(A.11)

Let F j
αi = F(bα, ei, ε

j). Then comparison of (A.10) and (A.11) proves that B spans
L(U, V, V ∗).

To show that B is linearly independent, suppose some linear combination equals zero:

F = F j
αi β

α ⊗ εi ⊗ ej = 0

Applying the multilinear form F to arbitrary vectors u ∈ U , v ∈ V and ω ∈ V ∗, it follows
by the computation of (A.11) that

∀u ∈ U,v ∈ V,ω ∈ V ∗ : F(u,v,ω) = 0 ⇒ ∀uα, vi, ωj ∈ R : F j
αiu

αviωj = 0 ⇒ F j
αi = 0 .

That means, the only linear combination of elements of B that sums to zero is the trivial
one.
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Lead by the basis representation of a multilinear form (A.9) and by Lee (2012),
Prop. 12.10, we use the notation U∗ ⊗ V ∗ ⊗ V to denote the space of multilinear forms
L(U, V, V ∗;R). For more general spaces of multilinear forms the notation works analo-
gously.

Definition A.4 (Covariant k-Tensor). For a positive integer k, we define the space of
covariant k-tensors on V to be the vector space

T k(V ∗) := V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
k copies

∼= L(V, . . . , V︸ ︷︷ ︸
k copies

;R) .

The number k is called the rank of the tensor.

Definition A.5 (Contravariant k-Tensor). For a positive integer k, we define the space
of contravariant k-tensors on V to be the vector space

T k(V ) := V ⊗ · · · ⊗ V︸ ︷︷ ︸
k copies

∼= L(V ∗, . . . , V ∗︸ ︷︷ ︸
k copies

;R) .

The number k is called the rank of the tensor.

A 0-tensor is, by convention, just a real number. The tensor product between a 0-
tensor and a k-tensor corresponds to a scalar multiplication.

Definition A.6 (Mixed (k, l)-Tensor). For a positive integers k, l, we define the space of
mixed (k, l)-tensors on V to be the vector space

T (k,l)(V ) := V ⊗ · · · ⊗ V︸ ︷︷ ︸
k copies

⊗V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
l copies

∼= L(V ∗, . . . , V ∗︸ ︷︷ ︸
k copies

, V, . . . , V︸ ︷︷ ︸
l copies

;R) .

Example A.4. Some of the defined tensor spaces are identical, i.e.

T (0,0)(V ) = T 0(V ∗) = T 0(V ) = R ,

T (0,1)(V ) = T 1(V ∗) = V ∗ ,

T (1,0)(V ) = T 1(V ) = V ,

T (0,k)(V ) = T k(V ∗) ,

T (k,0)(V ) = T k(V ) .

A.3 Alternating Tensors

For a positive integer k ∈ N, let Sk denote the symmetric group on k elements, i.e. the
group of all bijective maps s : {1, . . . , k} → {1, . . . , k}. An element of Sk is called a
permutation. Explicitly, s ∈ Sk is represented in the form(

1 2 · · · k
s(1) s(2) · · · s(k)

)
.
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A transposition is a permutation which exchanges two elements and keeps all others
fixed. Any permutation can be expressed as a non-unique composition of transpositions.
There exists an invariant in the representation of a permutation s by transpositions, which
is the number of transpositions n modulo 2, denoted by sgn(s) = (−1)n. This invariant
is called the sign of the permutation s.

Let s, t ∈ Sk be two permutations. Since the composition of two odd sgn(1) = −1 or
two even sgn(s) = 1 permutations, respectively, is an even permutation and the composi-
tion of an even and an odd permutation is an odd permutation, the sign of the composition
t ◦ s is given by

sgn(t ◦ s) = sgn(t) sgn(s) . (A.12)

Example A.5. Let s ∈ S3 be a permutation defined by

s =

(
1 2 3

s(1) = 1 s(2) = 3 s(3) = 2

)
. (A.13)

The permutation is expressible as a transposition between 2 and 3 which is an odd number
of transpositions. Hence, the sign of the permutation is sgn(s) = −1. Any possible
permutations s, v, t ∈ S3 with a positive sign are

s =

(
1 2 3
1 2 3

)
, v =

(
1 2 3
2 3 1

)
, t =

(
1 2 3
3 1 2

)
.

Any possible permutations s, v, t ∈ S3 with a negative sign are

s =

(
1 2 3
1 3 2

)
, v =

(
1 2 3
2 1 3

)
, t =

(
1 2 3
3 2 1

)
.

Definition A.7 (Action of a Permutation). We define the action of a permutation s ∈ Sk
on a covariant k-tensor2 F ∈ T k(V ∗) as follows:

sF : (v1, . . . ,vk) 7→ F(vs(1), . . . ,vs(k)) . (A.14)

Example A.6. Assume the permutation s =

(
1 2 3 4
2 1 4 3

)
. The action of s on a tensor

F ∈ T 4(V ∗) is defined by its application on v1, . . . ,v4 ∈ V as

sF(v1,v2,v3,v4) = F(v2,v1,v4,v3) .

Definition A.8 (Alternating Tensor). An alternating covariant k-tensor (alternating
multilinear form or a k-form) is a tensor A ∈ T k(V ∗) for which

∀s ∈ Sk sA = sgn(s)A , (A.15)

holds.

2Similar, we could define the action of a permutation on a contravariant k-tensor. For a mixed tensor
the action of a permutation is meaningless.
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That means, whenever two arguments of an alternating tensor are interchanged, then
its sign changes. We denote the set of all alternating tensors by

Λk(V ∗) :=
{
A ∈ T k(V ∗) | sA = sgn(s)A, ∀s ∈ Sk

}
.

Obviously, the set of alternating k-tensors is a subset of k-tensors, i.e. Λk(V ∗) ⊂ T k(V ∗).
Since the action of a permutation can also be defined for a contravariant tensors, it is also
possible to introduce alternating contravariant k-tensors.

Example A.7. Let B ∈ Λ3(V ∗) be a 3-form. For v1,v2,v3 ∈ V it holds:

B(v1,v2,v3) = −B(v1,v3,v2) = B(v3,v1,v2) =

−B(v3,v2,v1) = B(v2,v3,v1) = −B(v2,v1,v3) .

Lemma A.1 (Lee (2012), Lem. 14.1). Let A be a covariant k-tensor on a vector space
V . Then the following statements are equivalent:

(a) A is alternating, i.e. A ∈ Λk(V ∗).

(b) A(v1, . . . ,vk) = 0, whenever the k-tuple (v1, . . . ,vk) is linearly dependent.

(c) A gives the value zero whenever two of its arguments are equal:

A(v1, . . . ,w, . . . ,w, . . . ,vk) = 0 .

Proof. For the proof, we refer to Lee (2012).

Definition A.9 (Alternation). We define the function Alt : T k(V ∗) → Λk(V ∗), called
alternation, as follows:

Alt F =
1

k!

∑
s∈Sk

sgn(s) sF , (A.16)

where Sk is the symmetric group on k elements and sF denotes the action of a permutation
s on the tensor F. More explicitly, this means for v1, . . . ,vk ∈ V

Alt F(v1, . . . ,vk) =
1

k!

∑
s∈Sk

sgn(s) F(vs(1), . . . ,vs(k)) . (A.17)

The linearity of the alternation follows directly by the linearity of the summation and
can be shown by straight forward computation.

Proposition A.3. Let A be a covariant k-tensor on a vector space.

(a) Alt A is alternating.

(b) Alt A = A if and only if A is alternating.
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Proof. (a) First we have to prove, that Alt A satisfies condition (A.15). To this end,
let s, t ∈ Sk and A ∈ T k(V ∗). The composition of the two permutations is another
permutation r = t ◦ s ∈ Sk. The action of the permutation t on Alt A is computed as
follows:

t(Alt A)
(A.16)

=
1

k!

∑
s∈Sk

sgn(s) (t ◦ s)A =
1

k!

∑
s∈Sk

sgn(t) sgn(t) sgn(s) (t ◦ s)A

(A.12)
=

1

k!

∑
s∈Sk

sgn(t) sgn(t ◦ s) (t ◦ s)A =
1

k!

∑
r∈Sk

sgn(t) sgn(r) rA

(A.16)
= sgn(t)(Alt A) .

This demonstrates that Alt A is alternating and proves the first claim.
(b) Let A ∈ Λk(V ∗) be an alternating tensor. Due to Definition A.8, we have sA =

sgn(s)A for each s ∈ Sk and consequently

sgn(s)sA
(A.15)

= (sgn(s))2A = A . (A.18)

Since there are k! permutations s ∈ Sk,
∑

s∈Sk 1 = k! and

Alt A
(A.16)

=
1

k!

∑
s∈Sk

sgn(s) sA
(A.18)

=
1

k!

∑
s∈Sk

A =
1

k!
k! A = A ,

which finishes the proof.

Example A.8. Let G ∈ T 2(V ∗) and H ∈ T 3(V ∗) be two covariant tensors. The alterna-
tion of G is computed as

Alt G(v1,v2) =
1

2
(G(v1,v2)−G(v2,v1)) ,

and the alternation of H as

Alt H(v1,v2,v3) =
1

6
(H(v1,v2,v3) + H(v2,v3,v1) + H(v3,v1,v2)

−H(v1,v3,v2)−H(v2,v1,v3)−H(v3,v2,v1)) .

Example A.9. Let G ∈ T 2(V ∗) be a 2-tensor, then

Alt G(v2,v1) =
1

2
(G(v2,v1)−G(v1,v2))

= −1

2
(G(v1,v2)−G(v2,v1)) = −Alt G(v1,v2) .

The next Lemma, allows to formulate the proof of the upcoming Lemma A.3 by
straight forward computation.

Lemma A.2. Let F ∈ T k(V ∗) and G ∈ T l(V ∗) be covariant tensors of rank k and l,
respectively, then

Alt(Alt F⊗ Alt G) = Alt(F⊗G) . (A.19)
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Proof. By definition of the alternation (A.16), we can write (A.19) as

Alt(AltF⊗ AltG) =
1

k! l!

1

(k + l)!

∑
r∈Sk+l

∑
s∈Sk

∑
q∈Sl

sgn(r)sgn(s)sgn(q) r(sF⊗ qG) . (A.20)

The permutations s ∈ Sk and q ∈ Sl can be embedded in the set of permutations Sk+l.
Let us define two new permutations s′ ∈ S ′k ⊂ Sk+l and q′′ ∈ S ′′l ⊂ Sk+l, such that s′ acts
on the first k elements and q′′ acts on the last l elements of total k + l elements, i.e.

s′(i) =

{
s(i) for i ≤ k
i for i > k

, q′′(i) =

{
i for i ≤ k
q(i− k) + k for i > k .

We calculate:

Alt(Alt F⊗ Alt G) =

(A.20)
=

1

k! l!

1

(k + l)!

∑
r∈Sk+l

∑
s′∈S′

k

∑
q′′∈S′′

l

sgn(r)sgn(s′)sgn(q′′) (r ◦ s′ ◦ q′′)(F⊗G)

(A.12)
=

1

k! l!

1

(k + l)!

∑
r∈Sk+l

∑
s′∈S′

k

∑
q′′∈S′′

l

sgn(r)sgn(s′ ◦ q′′) r ◦ (s′ ◦ q′′)(F⊗G)

Since we sum over all permutations Sk+l, we can interchange the order of the permutations
as follows

Alt(AltF⊗ AltG) =

=
1

k! l!

∑
s′∈S′

k

∑
q′′∈S′′

l

sgn(s′ ◦ q′′)(s′ ◦ q′′)
(

1

(k + l)!

∑
r∈Sk+l

sgn(r) r(F⊗G)

)
(A.16)

=
1

k! l!

∑
s′∈S′

k

∑
q′′∈S′′

l

sgn(s′ ◦ q′′)(s′ ◦ q′′)Alt(F⊗G)

(A.18)
=

1

k! l!

∑
s′∈S′

k

∑
q′′∈S′′

l

Alt(F⊗G) =
1

k! l!
Alt(F⊗G)

∑
s′∈S′

k

∑
q′′∈S′′

l

1 = Alt(F⊗G) .

In the last step we used, that S ′k and S ′′l are described by k! and l! numbers of permutations.
Thus, we have k!l! compositions s′ ◦ q′′, s′ ∈ S ′k, q′′ ∈ S ′′l .

Definition A.10 (Elementary Alternating Tensor). Let I = (i1, . . . , ik) be a multi-index
of length k, i.e. a k-tuple of positive integers, and (ε1, . . . , εn) be a basis of V ∗. We define
the elementary alternating tensor (or elementary k-covector) εI ∈ Λk(V ∗) as

εI := k! Alt(εi1 ⊗ · · · ⊗ εik) =
∑
s∈Sk

sgn(s) εis(1) ⊗ · · · ⊗ εis(k) . (A.21)

According to Proposition A.3, the elementary alternating tensor εI is by definition an
alternating tensor. Interchanging two indices in the multi-index I consequently changes
the sign of εI .
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Example A.10. Let I = (1, 3). Then the elementary alternating tensor is obtained as

ε13 = ε1 ⊗ ε3 − ε3 ⊗ ε1 = −ε31 .

We want to remark the slight abuse of notation for the explicit use of multi-indices. For
a multi-index I = (3, 2, 5) the elementary alternating tensor is computed as

ε325 = ε3 ⊗ ε2 ⊗ ε5 − ε3 ⊗ ε5 ⊗ ε2 + ε2 ⊗ ε5 ⊗ ε3

− ε2 ⊗ ε3 ⊗ ε5 + ε5 ⊗ ε3 ⊗ ε2 − ε5 ⊗ ε2 ⊗ ε3 .

Definition A.11 (Determinant). Let [F ] be an (n×n)-matrix with components F i
j . The

determinant of the matrix [F ] is defined as

det([F ]) :=
∑
s∈Sn

sgn(s)F
s(1)
1 · · ·F s(n)

n . (A.22)

Since the multiplication of scalars commute, by relabeling, we are allowed to rewrite
the determinant as

det([F ]) =
∑
s∈Sn

sgn(s)F 1
s(1) · · ·F n

s(n) .

While the first version can be associated with the expansion of the determinant along the
columns, the second version corresponds to the expansion along the row.

Let εI be the alternating k-tensor of (A.21) with a multi-index I = (i1, . . . , ik) and
v1, . . . ,vk ∈ V . We denote the (n×k)-matrix of the component description of the vectors
in the basis (e1, . . . , en) by [v] = ([v1], . . . , [vk]). Choosing only the rows i1, . . . , ik of
[v], we obtain the submatrix [vI ]. If we apply the alternating tensor εI on the vectors
v1, . . . ,vk ∈ V , we can express the result using the determinant of the submatrix [vI ], i.e.

εI(v1, . . . ,vk) =
∑
s∈Sk

sgn(s) εis(1) ⊗ · · · ⊗ εis(k)(v1, . . . ,vk) =
∑
s∈Sk

sgn(s) v
is(1)
1 · · · vis(k)k

(A.22)
= det

v
i1
1 . . . vi1k
...

. . .
...

vik1 . . . vikk

 = det([vI ]) .

Example A.11. In the previous setting, let v1,v2 ∈ V . Then

ε13(v1,v2) = (ε1 ⊗ ε3 − ε3 ⊗ ε1)(v1,v2) = ε1(v1)ε3(v2)− ε3(v1)ε1(v2)

= v1
1v

3
2 − v3

1v
1
2 = det

(
v1

1 v1
2

v3
1 v3

2

)
.

Definition A.12 (Multi-Index Kronecker Delta). Let I = (i1, . . . , ik) and J = (j1, . . . , jk)
be two multi-indices and (ε1, . . . , εn) be a dual basis of the basis (e1, . . . , en) on V . By
applying the elementary alternating tensor εI to the set of basis vectors (ej1 , . . . , ejk), we
define a multi-index Kronecker delta as follows:

δIJ := εI(ej1 , . . . , ejk) = det

δ
i1
j1

. . . δi1jk
...

. . .
...

δikj1 . . . δikjk

 . (A.23)
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It is easily shown, that the multi-index Kronecker delta is characterized by the follow-
ing function:

δIJ =

{
sgn(s), if neither I nor J has a repeated index and J = s(I) for some s ∈ Sk ,
0, if I or J has a repeated index or J is not a permutation of I .

(A.24)

Example A.12. Let I = (1, 2) and J = (2, 3) be two multi-indices. Then

δ12
23 = det

(
δ1

2 δ1
3

δ2
2 δ2

3

)
= det

(
0 0
1 0

)
= 0 .

Using the argumentation with the function (A.24), the multi-index Kronecker delta is
zero, since J is not a permutation of I. In the case that J = (2, 1), the multi-index J
is obtained by one transposition of the multi-index I, which is an odd permutation of
sign −1 and consequently δIJ = −1. Again we verify the result using the definition of the
multi-index Kronecker delta, i.e.

δ12
21 = det

(
δ1

2 δ1
1

δ2
2 δ2

1

)
= det

(
0 1
1 0

)
= −1 .

Proposition A.4. Let (ε1, . . . , εn) be a basis of V ∗. Then for each k ∈ {1, . . . , n}, the
set

E = {εI | I is an increasing multi-index of length k}

is a basis for Λk(V ∗). Therefore,

dim Λk(V ∗) =

(
n

k

)
=

n!

k! (n− k)!
. (A.25)

If k > n, then dim Λk(V ∗) = 0.

According to Proposition A.4, we can write a k-form A ∈ Λk(V ∗) as a linear combi-
nation

A =
∑

{I : i1<···<ik}

AIε
I =:

∑
I

′
AIε

I , (A.26)

where the primed sum denotes the summation over increasing multi-indices of length k.

Proof. The fact that Λk(V ∗) is the trivial vector space when k > n follows immediately
from Lemma A.1(b), since every k-tuple of vectors is linearly dependent in that case. For
the case k ≤ n, we need to show that the set E spans Λk(V ∗) and is linearly independent.
Let (e1, . . . , en) be the basis for V dual to (ε1, . . . , εn). To show that E spans Λk(V ∗),
let A ∈ Λk(V ∗) and J = (j1, . . . , jk) be a multi-index. Since A ∈ Λk(V ∗) ⊂ T k(V ∗), an
alternating tensor is spanned with a basis of T k(V ∗) by A = AJε

j1⊗· · ·⊗εjk . According to
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Proposition A.3 it holds for any alternating tensor, that A = Alt A. Using the definition
of the alternation (A.16) and its linearity, we can write

A = Alt(AJε
j1 ⊗ · · · ⊗ εjk) (A.16)

=
1

k!

∑
s∈Sk

sgn(s) s(AJ ε
j1 ⊗ · · · ⊗ εjk)

= AJ
1

k!

∑
s∈Sk

sgn(s) s(εj1 ⊗ · · · ⊗ εjk) (A.21)
=

1

k!
AJε

J .
(A.27)

Let I be any increasing multi-index of length k. Since εJ is alternating, we can rewrite it
by an elementary alternating tensor εI of increasing multi-indices as εJ = sgn(s)εI . Since
A is an alternating tensor the components AJ are connected to the Ith components of
the increasing multi-index by AJ = sgn(s)AI . Suppressing the summation convention it
holds that

AJε
J = sgn(s)2AIε

I = AIε
I , no summation.

There exist k! permutations of each increasing multi-index I. Hence, the alternating
k-form (A.27) is transformed further to

A =
1

k!
AJε

J =
∑
I

′
AIε

I , (A.28)

which proves that E spans Λk(V ∗).
To show that E is a linearly independent set, suppose the identity

∑
I
′AIε

I = 0 holds
for some coefficients AI . Let J be any increasing multi-index. Applying both sides of the
identity to the vectors (ej1 , . . . , ejk) and using (A.23), we get

0 =
∑
I

′
AIε

I(ej1 , . . . , ejk) =
∑
I

′
AIδ

I
J = AJ .

Thus each coefficient AJ is zero, what shows the linear independency of E .

Example A.13. Let V be a vector space of dimension n = 3. The space of alternating
2-tensors Λ2(V ∗) has the dimension

dim Λ2(V ∗) =

(
3

2

)
=

3!

2!(3− 2)!
= 3 .

The basis of Λ2(V ∗) is given by all three elementary alternating tensors εI with an in-
creasing multi-index I of length 2, i.e.

ε12 = ε1 ⊗ ε2 − ε2 ⊗ ε1

ε13 = ε1 ⊗ ε3 − ε3 ⊗ ε1

ε23 = ε2 ⊗ ε3 − ε3 ⊗ ε2

Hence, we represent any 2-form A ∈ Λ2(V ∗) as

A
(A.26)

=
∑
I

′
AIε

I = A12ε
12 + A13ε

13 + A23ε
23 .
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According to (A.28), it is also possible to span the alternating tensor with all elementary
alternating tensors. Since the components of an alternating tensor of rank 2 satisfy
Aij = −Aji, we compute

A =
1

2!
AJε

J =
1

2
(A12ε

12 + A21ε
21 + A13ε

13 + A31ε
31 + A23ε

23 + A32ε
32)

=
1

2

(
(A12 − A21)ε12 + (A13 − A31)ε13 + (A23 − A32)ε23

)
= A12ε

12 + A13ε
13 + A23ε

23 =
∑′

AIε
I .

A.4 The Wedge Product

Definition A.13 (Wedge Product). Given A ∈ Λk(V ∗) and B ∈ Λl(V ∗), we define their
wedge product (or exterior product) as

A ∧B =
(k + l)!

k! l!
Alt(A⊗B) =

1

k! l!

∑
s∈Sk+l

sgn(s) s(A⊗B) . (A.29)

Example A.14. Let A ∈ Λ1(V ∗) = T 1(V ∗) und B ∈ Λ1(V ∗) = T 1(V ∗), then their wedge
product is

(A ∧B)(v1,v2)
(A.29)

= (A⊗B)(v1,v2)− (A⊗B)(v2,v1)

= (A⊗B−B⊗A)(v1,v2) .

Lemma A.3. Let (ε1, . . . , εn) be a basis for V ∗. For multi-indices I = (i1, . . . , ik) and
J = (j1, . . . , jl), the wedge product of the two associated elementary alternating tensors
εI and εJ satisfy

εI ∧ εJ = εIJ ,

where IJ = (i1, . . . , ik, j1, . . . , jl) is obtained by concatenating I and J .

Proof. We calculate

εI ∧ εJ (A.29)
=

(k + l)!

k! l!
Alt(εI ⊗ εJ)

(A.21)
=

(k + l)!

k! l!
Alt(k! Alt(εi1 ⊗ · · · ⊗ εik)⊗ l! Alt(εj1 ⊗ · · · ⊗ εjl))

(A.19)
= (k + l)!Alt((εi1 ⊗ · · · ⊗ εik)⊗ (εj1 ⊗ · · · ⊗ εjl))

(A.21)
= εIJ .

The algebraic properties of the wedge product are summarized in the following propo-
sition.
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Proposition A.5 (Lee (2012), Prop. 14.11). Suppose A,B, and C are multicovectors on
a vector space V .

a) Bilinearity: For a, b ∈ R,

(aA + bB) ∧C = a(A ∧C) + b(B ∧C)

C ∧ (aA + bB) = a(C ∧A) + b(C ∧B) .
(A.30)

b) Associativity:
A ∧ (B ∧C) = (A ∧B) ∧C .

c) Anticommutativity: For A ∈ Λk(V ∗) and B ∈ Λl(V ∗),

A ∧B = (−1)klB ∧A .

d) If (ε1, . . . , εn) is a basis of V ∗ and I = (i1, . . . , ik) a multi-index, then

εI = εi1 ∧ · · · ∧ εik . (A.31)

e) For any covectors ω1, . . . ,ωk ∈ V ∗ and vectors v1, . . . ,vk ∈ V ,

ω1 ∧ · · · ∧ ωk(v1, . . . ,vk) = det([ωj(vi)]) .

Proof. For the proof, we refer to Lee (2012).

Example A.15. Let (ε1, . . . , εn) be a basis of V ∗. Then we have

ε12 (A.21)
= 2Alt(ε1 ⊗ ε2)

(A.16)
= ε1 ⊗ ε2 − ε2 ⊗ ε1 (A.29)

= ε1 ∧ ε2 .

Let dim(V ) = 3 and A ∈ Λ2(V ∗) be an arbitrary 2-form. According to Propositions A.4
and A.5, the 2-form can be written in component form as

A = A12ε
12 + A13ε

13 + A23ε
23

= A12(ε1 ∧ ε2) + A13(ε1 ∧ ε3) + A23(ε2 ∧ ε3) .

The wedge product of the 2-form A ∈ Λ2(V ∗) and a 1-form B ∈ Λ1(V ∗) is written in
component form as

A ∧B = (A12ε
12 + A13ε

13 + A23ε
23) ∧ (B1ε

1 +B2ε
2 +B3ε

3)

(A.30)
= A12B3ε

123 + A13B2ε
132 + A23B1ε

231

(A.15)
= (A12B3 − A13B2 + A23B1)ε123

(A.31)
= (A12B3 − A13B2 + A23B1)ε1 ∧ ε2 ∧ ε3 .
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A.5 In Eight Steps to the Wedge Product

1. Let {1, . . . k} be a set of k positive integers. A permutation s ∈ Sk is the
bijective map s : {1, . . . k} → {1, . . . k}, (1, . . . , k) 7→ (s(1), . . . s(k)). The sign of
a permutation s ∈ Sk is defined by

sgn(s) :=

{
+1 if s is even ,
−1 if s is odd .

2. Action of a permutation s ∈ Sk on a covariant k-tensor F ∈ T k(V ∗). Let
v1, . . . ,vk ∈ V , then

sF : (v1, . . . ,vk) 7→ F(vs(1), . . . ,vs(k)) .

3. An alternating covariant k-tensor A ∈ Λk(V ∗) satisfies ∀s ∈ Sk
sA = sgn(s)A .

4. The alternation projection Alt : T k(V ∗)→ Λk(V ∗) is defined as

Alt F :=
1

k!

∑
s∈Sk

sgn(s) sF .

5. Let ε1, . . . , εn be a basis of V ∗ and I = (i1, . . . , ik) be a multi-index. The
elementary alternating tensor is defined as

εI := k! Alt(εi1 ⊗ · · · ⊗ εik) .

6. Let J be an arbitrary and I be an increasing multi-index of length k. The
component description of A ∈ Λk(V ∗) with n = dimV and dim Λk(V ∗) =

(
n
k

)
is

given by

A =
1

k!
AJε

J =
∑
I

′
AIε

I =
∑

{I:i1<···<ik}

AIε
I .

7. Let A ∈ Λk(V ∗) and B ∈ Λl(V ∗). The wedge product is defined as

A ∧B =
(k + l)!

k! l!
Alt(A⊗B) =

1

k! l!

∑
s∈Sk+l

sgn(s) s(A⊗B) .

8. Let I = (i1, . . . , ik), J = (j1, . . . , jl) and IJ = (i1, . . . , ik, j1, . . . , jl) be multi-
indices. The wedge product of elementary alternating tensors satisfies

εI ∧ εJ = εIJ .

By induction, we have εI = εi1 ∧ · · · ∧ εik .





AppendixB
Properties of the Cross Product

The cross product × as a skew-symmetric operator on R3 has some useful identities which
are frequently used in this paper. In R3 the cross product fulfills the Jacobi identity

a× (b× c) + b× (c× a) + c× (a× b) = 0 ∀a,b, c ∈ R3 . (B.1)

The triple product is invariant with respect to even permutation, i.e.

a · (b× c) = b · (c× a) = c · (a× b) ∀a,b, c ∈ R3 . (B.2)

The vector triple product satisfies Grassmann’s identity

a× (b× c) = (a · c)b− (a · b)c ∀a,b, c ∈ R3 . (B.3)

The quadruple product

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c) ∀a,b, c,d ∈ R3 , (B.4)

and another useful identity, where the tilde denotes the skew-symmetric tensor to an
associated axial vector, is

ãb̃b̃a = a× (b× (b× a)) = −b× (a× (a× b)) = −b̃ããb ∀a,b ∈ R3 . (B.5)
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Nacional Autónoma de México and UNESCO, Mexico City, 1958.

J. Eells, Jr. A setting for global analysis. Bulletin of the American Mathematical Society,
72(5):751–807, 1966.

H. I. Eliasson. Geometry of manifolds of maps. Journal of Differential Geometry, 1(1-2):
169–194, 1967.

M. Epstein. Thin-walled beams as directed curves. Acta Mechanica, 33(3):229–242, 1979.

M. Epstein. The Geometrical Language of Continuum Mechanics. Cambridge University
Press, 2010.

M. Epstein and M. Elzanowski. Material Inhomogeneities and their Evolution: A Geo-
metric Approach. Springer, 2007.

M. Epstein and D. W. Murray. Large deformation in-plane analysis of elastic beams.
Computers & Structures, 6:1–9, 1976a.

M. Epstein and D. W. Murray. Three-dimensional large deformation analysis of thin
walled beams. International Journal of Solids and Structures, 12(12):867–876, 1976b.

M. Epstein and R. Segev. Differentiable manifolds and the principle of virtual work in
continuum mechanics. Journal of Mathematical Physics, 21:1243–1245, 1980.

S. R. Eugster, C. Hesch, P. Betsch, and Ch. Glocker. Director-based beam finite ele-
ments relying on the geometrically exact beam theory formulated in skew coordinates.
International Journal for Numerical Methods in Engineering, 97(2):111–129, 2014.



116 BIBLIOGRAPHY

L. Euler. Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes,
chapter Additamentum De Curvis Elasticis, pages 245–310. Lausanne & Geneva, 1744.
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P. Germain. La méthodes des puissances virtuelles en mécanique des milieux continus -
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Springer, 1967.

E. Hellinger. Die allgemeinen Ansätze der Mechanik der Kontinua. In Mechanik, vol-
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The non-linear field theories of mechanics, volume III/3 of Encyclopedia of Physics.
Springer, 1965.

C. Truesdell and R. Toupin. The classical field theories. In S. Flügge, editor, Principles
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